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Abstract

A two-step alternating direction explicit method is developed to solve the space-dependent
reactor kinetics equations in two space dimensions. As a special case in the general class of
alternating direction implicit methods, this method is analyzed for accuracy and stability.

To test the validity of this method it is compared with the implicit-difference method used in
the TWIGL program. It is shown that the two methods are closely related.

The time dependent neutron fluxes of the pressurized water reactor (PWR), during control
rod insertion, and, of the CANDU-PHW reactor, in case of postulated loss of coolant accident,

are obtained from the numerical calculation results.
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devoted to the development and analysis of
1. Introduction methods which will solve the time-dependent
multigroup neuton diffusion equation in one or

In recent years, considerable effort has been more spatrial dimensions.

* Present Address: Chungnam National University.
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The power reactors are so large that they
can not be analyzed by point kinetics equations.

As is well known. when one wishes to
describe with great detail the transient beha-
viour of large nuclear power reactors, it is
necessary to work with multidimensional cal-
culations.

For safety purposes, transient analysis of the
large liquid-metal-cooled fast breeder reactors
must include detailed neutronics calculations.

The purpose of this work is to devise an
adequate technique for calculating time-depen-
dent reactor kinetics equations in two space
dimensions.

The techniques, for the multigroup form of
the time-dependent diffusion equations in one
or more space dimensions, can be divided into
two broad categories. One is the direct solution
technique, the other is the indirect solution
technique. The indirect solution techniques
include: time-synthesis("’®, space-time synthesis
3-8, quasistatic -1, and nodal methods, (14~

The time-synthesis approximation is derived
by expanding the neutron flux in known fun-
ctions of spatial dimension, with unknown
expansion coefficients of time.

The space-time synthesis equations are derived
by expanding the neutron ffux in known fun-
ctions of two spatial dimensions with unknown
combining coefficients which depend on the
remaining spatial dimension and time.

In the quasi-static method, the neutron flux
is factored into a shape function that is slowly
varying with time and an amplitude function
that varies more rapidly with time.

In the nodal methcd, when a reactor can
readily be visualized as consisting of several
cores, or regions, with a weak neutronic inter-
action, it may be possible to adequately repre-
sent kinetics behaviour by a system of coupled
roint reactor equations, one for each core.

These indirect methods are characterized by

relatively small computational time requirements
and by a lack of definitive error bounds on the
final solutions.

The direct solution techniques, however, solve
the equations by finite differencing in space
and time. They are characterized by fairly
definitive error bounds and are thus valuable as
numerical standards against which the indirect
techniques may be measured.

As computational capabilities increase, the
direct methods also become practical tools for
solving two dimensional kinetics equations.

In one dimension, the GAKIN 20 and WIGLE
2L codes represent successful applications of
direct methods. In two dimensions, the WIGLE
method has been extended into the code TWIGL
@2, This code is limited to two neutron groups.

A somewhat different separation of the
neutron balance operator for two-dimensional
problems has deen developed by Denning,
etal @,

The basis of this method, known as the
alternating direction explicit method, is to
separate the neutron balance operator ro that
the terms describing the coupling among fluxes
at different mesh rpoint in time (t+At) are
based on only a two-point difference.

Using the known value of the flux on the
boundary, the algorithm becomes explicit when
the mesh is transversed sequentially. The
direction of the spatial coupling is alternated
on successive time steps.

Reed and Hanren,™ and Fergusen and
Hansen™" bave fond that the exponential trans-
formed alternating direction explicit method
significantly reduces the truncation error. But
this method shows oscillations having no physical
meaning. The alternating direction implicit
method has also been examined for two-dimen-
sional problems by Varga® and by Wight and
Hansen 7,

If the two-dimensional spatial mesh is swept
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to solve for new fluxes point by point, the
method is termed explicit. If a whole row or
column of points is solved simultaneously for
new fluxes, it is termed implicit.

Hageman and Yasinsky® have developed a
varient of this method, known as ADI-B2, in
which the coupling term in the other direction
is replaced by a buckling evaluated from fluxes
at time t.

The alternating direction implicit method is
stable but has a large truncation error. Wight
and Hansen®’3” have found that the exponen-
tial transformation method reduced the trun-
cation error, but the method was no longer
unconditionally stable.

The equations are finite-differenced on a fixed
spatial mesh before they are solved. From the
finite differenced form of the equations, the two-
step alternating direction explicit solution tech-
nique is presented and analyzed for accuracy
and stability.

The time dependent neutron flux distributions
of the pressurized water reactor(PWR) and the
CANDU-PHW reactor are obtained from the

results.

II. The Nuclear Reactor Kinetics
Equations.

The multigroup diffusion equation for the space-

and time-dependent neutron flux is given by

o b D= Dy, D,
i v (e Dy +301) 0 g 12 6
" 2z Va7 Do+ T 00) 0y ag .
Mer =] wZo vl o Z&Elﬁéi}#zaa;
o S
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The equations (1) and (2) continuous in both
spatial and temporal variabels.

Using the finite difference method,®® the
spatially discretized form of Egs. (1) and (2)
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and the delayed-neutron precursor density is
given by

0
T’}FCi(n B =—-2C:(r,¢t)

3 Pur (040 (r,0), @

1<l

where the symbols are defined in Nomenclature.

The boundary condition for Eqs. (1) and (2)
are the homogeneous Neumann or Dirichlet
type®®, At internal interfaces, continuity of
the flux and normal component of the neutron
current is required. An initial flux distribution
in energy and space must be specified.

Equations (1) and (2) can be compacted into
the matrix form©¥,

20, H=M(r, DO, 1) @

where @ is column matrix,
$ (r,0)
¢y (r,t)

O(r.0)= ¢, ér, £) (4a)

C, 0

C, fr, t)
and M(r,t) is a matrix,
v fu
Vs Sor

vefer

vefa1 (48)

2,
can be written as

av,
dt

G I
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(i<eg<6)
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and
A aC }G; PuTs ®
a<gi<h
-where ¥, is column matrix,
Be1 )
v,= ¢”:”2 N
bev )

D, is the matrix corresponding to the diffe-
rence operator, T,,- contains a term represen-
ting the intergroup transfer processes, and F,,
represents the transfer of delayed neutrons into
group g due to decay in precursor group 7,4,
contains the precursor decay constants, while
P;,- represents the production of delayed pre-
cursor 7 due to fission in group g’.

The system of ordinary differential equations
(5) and (6) can be written as the matrix-diffe-
rential equation,

av
— =AY ®

where A is square and of the order Ny(G+1I)
matrix, N is the number of spatial mesh points,

¥ and A have been defined as:

and
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For later reference, several matrices are

defined here as follows:
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U=/0 0 0  Fg Fg (11b)
0 0
0 0 e 0
Toy Q «eeees 0
------------ 0
L= To Torr0 (110
Pll I’12 ...... PlG .
P11 }’I2 ...... PIG
and
T=A—-(D+L+U) (11d)

For any period of time, 4¢, during which all
terms in A are constant, Eq (8) will be the
form of solution

U (4t) —exp(A4D T (0) (12)
where ¥ (0) is the initial condition.

Because this differential equation has the
property of stiffness®®, any attempt to represent
the time derivative in Eq (8 by a finite
difference approximation will require that a
relatively small time step be taken in order
to follow the more rapidly varying components
of the equation.

The A matrix is a real, essential positive,
and irreducible®, It states that exp (A 4f) is
positive where t>0,

In the two dimensional space the finite diffe-
rence approximation to the p.Dp operator con-
tained in A is consistent and accurate to order
4x* and 4y?, i.e.

AP=MP+0(4z% +0(dy¥) (13)
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III. A Two-step Alternating Direction
Explicit Method

To obtain a solution for Eq. (8), the time
derivative is replaced by two successive forward
differences over a time interval, 4t (=2h).

Let the time step start at ¢=( so that the
initial value is ¥ (0). For the two halves of the

time step, each of duration £, split 4 as follows;

A=A+ A, (14a)
and

A=A;+ A, (14b)
where

A=U+Dy

A,=T+L+Dy

A;=U+Dy (15)

A=T+L+Dy

The matrix Dy contains the two strips of D
which lie above the diagonal plus one-half of
each term on the diagonal. The matrix Dy
contains the two strips below the diagonal plus
the remainder of each diagonal term.

The differential equation is written by the
two step finite difference equation,

w>_;!i<92 =A¥ (h) + AT (0)

M;f’ﬂ@ =4 (2h) + AT (h) (16)

or, equivalently,

I-hADV (R)=I+RADT (O (17a)

(I-hAYY 2h)=(I+hADY (k) (17b)
where ¥ (k) is an intermediate vector computed
on the first half-step. The name alternating-
direction explicit derives from the diffusion
term where one direction is being handled
explicitly in one half-step, and the other dire-
ction is handled in the next half-step.

By substituting Eq. (17a) into Eq. (17b) we
obtain the formal expression for the advancem-
ent matrix B(h):

T(2h)=UT—hA)™ +hA;) (I—hA,)™!
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(I+hA) ¥(0) (18)
=B ¥(0)
where
B(h)=I—kA)™' (I+hA;) (I-hA,™!
(I+hRAYD 19
A general algorithm equation is obtained as
follows,
UNI_B (TN (20)

with the initial value, ¥°=¥(0)

Equations (19) and (20) represent an arbitrary
alternating-direction explicit method.

Although it is termed a two-step method
because two successive finite differences are
taken to advance the solution over time 4¢, it
is essential to think of the two operators which
advance the solution over each half-step 4 as
inseperable from each other.

The solution is thus said to be advanced over
one step during time ¢, even though the entire
space and energy mesh has been swept twice.

The first half-step is carried out by forward
substitution, sweeping from one corner of the
mesh to the diagonally-opposit corner and from
the highest enmergy group to the lowest. The
second half-step reverses the direction of the

spatial sweep.

IV. Accuracy and Stability of the Method

1. Steady State Property.

For the steady state reactor,

_‘%‘szoso (21)

Ui(oh) =Bh)¥T=Y" (22)
where V=7 (0)
which is the exact solution, independent of A.
Thus, operation on a ¥ which represents a
just-critical configuration by a B (k) formed from
an A containing the just-critical parameters will
result in no change in ¥°,
This can be shown by writing Eq. (19)
B(h)={I—hA)Y(I+hA) (I-hA)™
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(I+hAY).
Using the splitting relations defined in Eq.
(14), this becomes
Bhy=UI-hA) "I-h(A,—~A)II-LA)™!
U-k(A;—-4).
Since AT°=(,
BWV°=I—hrA) ' (I-h(A—A))
(I-RA) " (I-hA)VO.
=(I-hA) "(I-hA)T=W0

2. Temporal Truncation Error

This property is concerned with how well the
advancement matrix B(h) approximates the
exact discrete solution operator e2*4, For suffici-
ently small values of %, the difference between
the solution computed using B(h) and that
computed using e®4 over a time step 4t varies
approximately as a single power of k. As shown
below, B(h) agrees with the expansion of ¢2*4
through terms of order A2.

A Taylor series expansion of the exact oper-
ator yields

eA=TL Oh A+ 2h2A2 - ...... (23)

The Eq. (19) is

B(ﬁ):([—hAg)‘l(I—hA3+hA) (I-rAH?
I—RhA +RA
— [T+ (I—hAy) ' hA)
I+ (I hAD 1 RA)
:I—,l—h(l—hA;Q‘1A+h(I—hA1)'l
A+RE(I—-RA)-(I-FEA,) 1Az
=I+h{2]+hA +hA;) A+h2{I+hA,)

(I+hA)) A (24)
For symmetric splitting, this equation is
B(h)=I+2hA+2k2A%+( (1Y) (25)

For any other splitting, the terms of order h?
remain as in Eq.(24).

3. Stability

To ensure stability, it is necessary that the
solution remain bounded for finite times and
finite time steps. The definition for which the
advancement matrix, B ( %), is stable is that (2,20

1B <8 (26)
for

0<hr<r, 0<tLT
where b is a constant.

This condition can be satisfied if the solution
grows by no more than a factor (1+ Kdt) with
each time step®®, where K is a constant. B (k)
contains quantities of the form kv, D./4z?
arising from the approximation of the diffusion
operator, which become very large as Az? bec-
omes very small. If we fix 4z and merely
shrink ¢, then the method will be stable. The
real problem exists when both 4t and Az app-
roach zero together. To examine this case we
shall require that 4t and Az are related so they
approach zero together with the ratio r="hv,D,/
4z held fixed.

If any value of the constant r may be used,
the method is said to be unconditionally stable.

V. Numerical Results

A computer code which is named KIND has
been developed to calculate the method of
chapter III in two dimensional geometry. Several
trial problems have been run with this code.
Problem | was for simplified pressurized water
reactor cylindrical geometry and problem 2 was
for the Wolsung-1 Nuclear Generating Ssation
(CANDU-PHW).

CASE 2. PWR Reactor

The test case 1 is for a simplified PWR
(Pressurized Water Reactor) cylindrical reactor
as depicted in Fig. 1.

The inverse group speeds used were 1/v,=
1x1077 and 1/v,==5X%107%(sec/cm). One group
of delayed neutrons was considered with §=
0.0064 and 2=0. 08.

This problem began with the rods out of the
seed 3 region.

The initial (critical) flux distribution for the
exact solution was a steady state solution for
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Table 1. Lattice Parameters of Test Case 1.

| Seed1 | seed2 | P | Ped 3 in Bl Out Blkt| Refl. | Water
D, 1. 367 !‘ 1. 404 1.377 1.377 1.291 1.297 1. 412 1.625
a1 0.01099 | 0.00661 | 0.01061 | 0.006551 0.008494] 0. 008400, 0.001483 0.000365
2n 0. 01309 i 0.01582 | 0.01309 | 0.01586 ! 0.01116 | 0.01114 | 0.005923 0.03797
v3iin 0.007142 0. 006602 0.006046/ 0.006046{ 0.002677, 0.002681 0 0
D, 0.3825 ' 0.3778 0. 3384 0. 3384 0. 4565 0. 4572 0.7162 0.2730
Sz 0.1511 | 0.C9493 | 0.1339 | 0.09039 | 0.04975 | 0.04727 | 0.006549, 0.01083
v3ire | 0.194451° 0.147798 0.171219] 0.171219] 0. 058203 |
the material parameters shown in Table 1. a0
The transient problem was stimulated by a TWIGL
sesesse ADE Method
step-wise scram, at t=0, of the group of con- as k-
trol rods in the cross-hatched seed 3 region.
This created an asymtotic shutdown reactivity 10l =0 oo}
of~1. 6%. /
The time step used for this problem was 5X% sl ho’m.z .
10~ sec. Figures 2 through 4 display the 2
calculation results which have been compared soL .
with the results of the TWIGL code which has é t=0.001sec  \o
been widely applied in the United States over E 5L ° .
a number of years. = .
The calculation results were in close agree- ol A / . :°
ment between the two methods for this problem. / / .
CASE 2. Wolsung-1 Nuclear Generating St-a- /° '=0.005 sec A\
tion Ve /° C
Case 2 was fol a reactvitiy accident analys‘is . = ,.: 1 | | |
RADIAL MESH POINT ° 5 0 5 20 2 =8

7 no3 16 8
Fo J NS YK YN S W 1 Y W S T W Y W P I O cm
REFLECTOR
2 20 cm
) s
] £/
b
4 A
4 /3ﬂ
4 7
K Ay
B #
g & g/ g
z 1 INNER 1INA E | OUTER
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@ 7 1 BLANKET IS 5| pLancer AT
] 13
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E U]
26 260cm
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28 —— . 280¢m
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Tig. 1. PWR Cylindrical Geometry.

Axial Mesh Point

Fig. 2. Thermal Flux at Radial Mesh Point 5,
PWR Problem.

of Wolsung-1 (CANDU-PHW) Nuclear Genera-
ting Station.

The reactor core is nearly cylindrical, 594. 4
cm in length and 314. 3cm in equivalent diame-
ter.

It is made up of 380 calandria tubes or fuel
channels. The fuel channels are arranged on
a regular square lattice with center to center
spacing of 28.575cm. The pressure tube holds
12 fuel bundles each of which has 37 fuel ele-

ments. D,O coolant is pumped through the fuel
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Fig. 3. Thermal Flux at Radial Mesh Point 10,
PWR Problem.

. TWIGL
““ eevoe ADE Method
t=0
L]
1=0.0002 sec
w4
A /
{
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o t=0.001sec
.
L
- .
10}~ . ° N\
E . 1:0.005 se¢  °©
g .
_D L] L
£ .
2 .
[ = .
5 - L o\
-
. o A\ ¢
.
.
o I { 1 1 i
o 5 to 15 20 25 28

*xigl Mesh Point
Fig. 4. Thermal Flux at Radial Mesh Point 15,
PWR Problem.
elements.
The air gap between the calandria tube and

the pressure tube serves to insulate the hot

heavy water coolant in the pressure tube from
the cold heavy water moderator surrounding
the calandria tube. Fig. 5 shows the initial
core configuration®” which consists of two
regions; depleted inner fuel region of 124
channels and undepleted outer fuel region of
256 channels. The reactor core is surrounded
by the heavy water reflector. The power reactor
must be installed with two independent shut-
down systems according to regulations set by
the United State Nuclear Regulatory Commis-
sion.®® Two shutdown systems have also been
installed in the Wolsung-1 Nuclear Generating
Station.

One system is the shutoff rods (28 rods)
whose reactivity worth ranges between -74 and
-80 milli-k for the configurations with which
the reactor is expected to operate for significant
lengths of time. The other is a poison injection
system which is designed to give a negative
reactivity insertion rate which would be as
effective as the shutoff rod system. The nega-
tive reactivity inserted on completion of the
injection is greater than -300 milli-k.

In case 2, the reactivity transient represents

a nonuniform loss-of-coolant (LOCA) of half

Quter Zcre

Inner Z¢-e

. Reflector
-

;. . Macerator

Fig. 5. Side View of the Wolsung-1 Core.
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Table 2. Lattice Parameters of Test Case 2.
Region Group g Dg (cm) T (em™) | vXse (em™) 21 (em™)

1-12 1 1.321 1.009x 102 0.0 1.009 %1072
2 0. 8837 7.788x107° 0.0

13, 14, 15, 18, 1 1.274 8.1556% 108 0.0 7.3928x 1078

19,20 2 0.94133 4.083x10°8 4.63x1073

16,17 1 1.274 8.1556x 1078 0.0 7.3924 %1073
2 0.94126 4.1014 %1073 4.578 %1073

7 =7.14X10%m/sec, v2=2, 725X 10%m/sec.

Table 3. Delayed Neutron Data of Test Case 2.

Group i I Bi i (sec™D)
1| 2.95%10° | 0. 100612
2| 1.165%107° 0. 1385
3| 1.033x 1078 | 0.1218
4 2.350X 107 0.3175
5 7.80x107¢ | 1.389
6 | 1.97x107¢ | 3.7¢4

core and a subsequent asymmetric insertion of
the shutoff rods. The transient is approximated
by a linear increase of 0.7% in the nentron
yield per fission for 0.4 sec, followed by an
increase in the the thermal absorption cross
section of 74 milli-k in one-half of the core

during the following 1.8 sec.

Fig. 6 shows the mesh space of the reactor
4
3 5
!| 2 4 15 6
i
!
£
'(_: { i3 16 17 18 7
| |
!
b
i
12 8
19 20
1] 9
10

f——— 760 em _—

Fig. 6. Mesh Space of Reactor Core.

core and the two group cell parameters. Addi-
tional data on the problem is given in Tables
2 and 3(37)'

Table 4. Relative Average Thermal Flux of Test
Case 2. (The values of ¢ are in relative

units)
=z 1%e 5
Time (sec) (At=¢(§‘(6)1 sec) (AtZ%? (Ot0>5 sec)
0.0 1. 000 1. 000
0.2 1.914 1.991
0.4 2.573 2.577
0.6 2.588 2.498
0.8 2.158 2.094
1.0 1. 802 1. 806
1.2 1. 265 1.319
1.4 0. 865 0.922
1.6 0. 677 0.724
1.8 0. 604 0.635
2.0 0. 559 0.578
2.2 0.524 | 0.535
L RS 186 249

a. vX.s has been increased during response time.
b. X s has been decreased during response time.

3.0

4t =0.005 sec

»

-}

E 22

£ s

<

o .4

o

2

g 1.0

o

2 06

o

E 1 1 1 1 3 ]
04 08 12 16 20 24

Tima (s}

Fig. 7. Time-Dependent Thermal Flux, Wolsung
1. NGS.
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The mesh spacing of X-and Y-directions is
28.575cm for the inner and outer core regions
and 32, 7cm for the reflector region.

The solution was calculated using various
time steps with the two-step alternating direc-
tion explicit method.

The transient results for problem 2 are
presented in Table 4 and Figures 7 through 11.

The results were indirectly compared with
the results of another method 949, The relative
average thermal flux in Fig. 8 has she same
pattern in the results of the improved quasi-stat-

3.0

26+ ft =0.0lses
22+

La - \\

\
AN

C6 - “—

Relative Avaregs Thermal Flux
o &
Laai T

S G U TN SO R SR
04 a1 15 L0 &4
Fig. 8. Time-Dependent Thermal Flux. Half-Core

LOCA of Wolsung 1.

81=0.01 sec Proposad ADE Method

L /m

Thermal Flux ( Arbitrary Units )

! t 1 L 3.
] 5 Hel 15 20 25 27
Y —Direction #Mesh Point

Fig. 9. Time-Dependent Thermal Flux at X-Mesh
Point 7, Wolsung-1. Problem.

20
A 20 Olsee Ftopesed ADE Metnod W

7 1zC.4soc

/N

15 =
l N

t=].0sec

Thermal Flux { Arbitrary Unlts )

f/////

o

[Xe] i3 20 25 27

T - Diractien Mesn Toint

Fig. 10. Time-Dependent Thermal Flux at X-Mesh
Point 11, Wolsung-1 Problem.

20

L1 = 0.0tsec Proposed ADE Method

1_ /

ary Unifs )
<
T
~.

Theimal Fux ! Arp
. w
n o
- o
w
Fy B}
@
Q

t5 20 25 27
Y- Direction Mesh Point

Fig. 11. Time-Dependent Thermal Flux at X-Mesh
Point 14, Wolsung-1 Problem.

ic method.
The relative average neutron power was

increased during the response time (0.4 sec.



108

for Wolsung-1 problem) to 2.573 times of
steady state and decreased in the subsequent
insertions of the shutdown system.

The average neutron power at the time 1.4
sec. after the transient initiation was decreased

to 0.865 times of steady state.
VI. Discussions and Conclusions

Several important characteristics are easily
observed in these numerical experiments.

There are two kinds of truncation errors in
the nuclear reactor kinetics problem. One error
came from the finite difference method of space
and the other came from the time difference
method.

The spatial and temporal truncation errors
for the alternating direction explicit method
have been shown to be within order 4X2? and
h?, respectively. In the two test cases, the
alternating direction explicit method has given
acceptably accurate solutions, within a reasona-
ble amount of time, with tolerable step sizes.
It was shown to be consistent and stable with
the reactor kinetics equations. Because transient
results are extremely sensitive to input cross
section values and input initial values, a very
accurate initial flux distribution and eigenvalue
must be used in the calculations. The calculation
results of a simplified PWR cylindrical reactor
between TWIGL and this method were comp-
arable.

In the case of the CANDU-PHW reactor,
these results were also comparable between this
method and the improved quasi-static method.

As a conclusion it was found that this method
represents reliable solutions to these two pro-

blems.
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NOMENCLATURE

g =index number of the energy group

i =index number of the delayed neutron precursor
group

¢, =scalar neutron flux in energy group g(neutr-
ons/cm’sec)

C; =density of the #** precursor (cm™%)

v =speed of the neutrons in the g* group (cm/
sec)

D, =diffusion coefficient for neutrons in group g
(cm)
Xz =the fission spectrum yield in group g
=average number of neutrons per fission in
group g
Y. s¢ =macroscopic fission cross section in group g
> .¢ =macroscopic absorption cross section in group g

3¢’ =macroscopic scattering removal cross section

from g’ to g
i =decay constant of the i** precursor (sec™)
Xg: —energy spectrum of mneutrons from the i**

precursor
8 =delayed group yield fraction
Tee =Ae (1P L re—Cog— 5 Soes'e
Ligr =Aeire (A=) +Eee, g'%g
fei =2iXgi=probanility (sec™) that #* precursor
will yield a neutron in group g
Pigr =fivg:3irer=production factor (cm™), for the:

i*4 precursor.



