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GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM

OF A MATHEMATICAL MODEL FOR UNSTIRRED

MEMBRANE REACTORS

Yongli Song and Tonghua Zhang

Abstract. This paper devotes to the study of a diffusive model for un-
stirred membrane reactors with maintenance energy subject to a homoge-
neous Neumann boundary condition. It shows that the unique constant
steady state is globally asymptotically stable when it exists. This result
further implies the non-existence of the non-uniform steady state solution.

1. Introduction

Consider the following system

∂S

∂t
=

D1

V
∆S +

F

V
(S0 − S)− µmSX

α(KS + S)
−mSX,

∂X

∂t
=

D2

V
∆X +

µmSX

KS + S
− kdX,

(1)

which, when Di = 0 (i = 1, 2) is the model for continuous flow membrane
bioreactor with Monod growth rate and was investigated in [6, 10]. In this
paper, we consider a spatially generalised version of the model, namely, the
case when Di 6= 0. To simplify the discussion, we first introduce

u = k1S, v = k2X, t∗ = k3t, τ =
V

F

with

k1 =
1

KS
, k2 =

1

αKS
, k3 = µm

and then let

di =
Di

k3V
, τ∗ = k3τ, s0 = K1S0, m∗

S =
k1mS

k2k3
, k∗d =

kd

k3
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so that we can reduce the number of parameters in the model. Then after
dropping the asterisks for notational simplicity we reach the nondimensional
model

(2)











∂u
∂t = d1∆u+ 1

τ (s0 − u)− uv
1+u −mSv,

∂v
∂t = d2∆v + uv

1+u − kdv,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

where u(x, t), v(x, t) are concentrations of the substrate and microorganisms in
the reactor, respectively. All parameters are positive and more precisely, di, i =
1, 2 are diffusive coefficients, which may result in much richer dynamics [4, 5, 7,
9, 11]. s0 is known as input density, kd the death rate of the microorganisms and
mS denotes the maintenance energy; if mS = 0, model (2) is the conventional
chemostat model with Monod growth kinetics [8]. Inspired by reference [5], we
assume model (2) is subject to homogeneous Neumann boundary condition

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω.

It is easy to verify [6, 10] or directly from system
{

−d1∆u = 1
τ (s0 − u)− uv

1+u −mSv

−d2∆v = uv
1+u − kdv

that system (2) always has a washout equilibrium (s0, 0), which is semistable
and implies that the microorganisms eventually go extinction. Furthermore,
(2) has a unique, uniformly positive equilibrium E∗(u∗, v∗) where

v∗ =
s0 − u∗

τ(kd +ms)
, u∗ =

kd

1− kd

if and only if 0 < kd < s0
1+s0

. Since, in practice we are only interested in positive

equilibrium, in the rest of this letter we always assume kd < s0
1+s0

.

The rest of this letter devotes to the study of local and global stability of
E∗, which biologically implies the coexistence of two species. Mathematically
a stable positive equilibrium implies the non-existence of spatial patterns.

2. Local stability analysis of E∗

Notice that the Jacobian at E∗ is

(3) J =

(

d1∆+ J11 J12
J21 d2∆+ J22

)

,

where

J11 = − 1

τ
− v

(1 + u)2
, J12 = − u

1 + u
−mS , J21 =

v

(1 + u)2
, J22 =

u

1 + u
− kd.

Then we can prove the following theorem.
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Theorem 2.1. When 0 < kd < s0
1+s0

system (2) has a unique positive equi-

librium E∗. And when it exists, E∗ is uniformly asymptotically stable in the

sense of [2].

Proof. The existence of the uniform steady state has been discussed in previous
section. Next, we prove the stability by verifying that all eigenvalues of the
linear operator associated with (2) have negative real part. To this end, we
first revisit some notations in [7]. Assume λi+1 > λi > λ0 = 0, i = 1, 2, . . .
are eigenvalues of −∆ on its domain Ω with Neumann boundary condition and
E(λi) are the associated eigenspaces. Furthermore we denote the orthonormal
basis of E(λi) by Xi. Then the solution space, X = {(u, v)}, of (2) can be
decomposed as

X =

∞
⊕

i=0

Xi.

It is easy to see that Xi is an invariant set under the Jacobian J defined in (3).
As pointed out by Peng and Wang [7], eigenvalues of J on Xi are equivalent
to that of matrix

Mi =

(

−d1λi + J11 J12
J21 −d2λi + J22

)

.

Since at the positive equilibrium we have

J11 < 0, J12 < 0, J21 > 0 and J22 = 0,

the determinant and trace of Mi satisfy

detMi =

∣

∣

∣

∣

−d1λi + J11 J12
J21 −d2λi + J22

∣

∣

∣

∣

= d1d2λ
2
i − d2J11λi − J12J21 > 0

and

trMi = −(d1 + d2)λi + J11 < 0

for all i = 0, 1, 2, . . ., respectively. Then we obtain that E1 is uniformly asymp-
totically stable. �

Remark 2.2. Theorem 2.1 shows the local stability of the positive equilibrium
of system (2), which implies (2) does not have non-constant positive steady
state in a neighbourhood of E∗.

Remark 2.3. Notice that at the washout equilibrium point E0(s0, 0),

J11 = − 1

τ
, J22 =

s0

1 + s0
− kd, J12 = − s0

1 + s0
−mS and J21 = 0.

Then it is asymptotically stable if (2) does not have a positive equilibrium.
When E∗ exists, the Jacobian at E0 has two eigenvalues

η1i = −d1λi + J11 < 0

and

η2i = −d2λi + J22
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on each Xi. Noticing η20 = J22 > 0 yields that the washout equilibrium is
unstable, which is the same as the case without diffusion.

3. Global stability of the positive equilibrium E
∗

In previous section, we have proven the local stability of E∗. This section
dedicates the proof of the global stability. We start with proving the following
lemma.

Lemma 3.1. System (2) has a positively invariant set Γ, which attracts all

solutions of (2) and includes E∗.

Proof. First, we can easily verify that u(·, t) and v(·, t) remain positive for
t large enough and u(·, t0) > 0, v(·, t0) > 0. Next, we prove that v(·, t) is
uniformly bounded on Ω by contradiction. Otherwise, there are some x∗ ∈ Ω
such that v(x∗, t) → +∞ as t → ∞. Then for any M > 0 there exists t1 > 0
such that v(x∗, t) > M for all t > t1. From the first equation of (2) and for the
above x∗,M we have

∂u

∂t
−d1∆u =

1

τ
(s0−u)− uv

1 + u
−mSv <

1

τ
(s0−u)−mSv <

1

τ
(s0−u)−mSM.

Then w(t), the solution of
{

dw(t)
dt = 1

τ (s0 − w(t)) −mSM,

w(t0) = maxΩ u(·, t0),
is an upper solution of

{

∂u
∂t − d1∆u = 1

τ (s0 − u)−mSM,

u0 = u(x∗, t0) > 0.

Then limt→∞ sup(u(x∗, t)) ≤ limt→∞ w(t). Notice that w(t) → (s0 − τmSM)
as t → +∞. Then for any ǫ > 0 there is t2 > t1 such that

u(x∗, t) ≤ w(t) < s0 − τmSM + ǫ for all t > t2.

Then for 0 < ǫ < kd

2−kd

and

M =
(1 − kd +

ǫ
2 )(s0 + ǫ)− kd +

ǫ
2

(1− kd +
ǫ
2 )τmS

>
(1− kd)(s0 + ǫ)− kd

(1− kd)τmS
,

we have
u(x∗, t)

1 + u(x∗, t)
− kd < − ǫ

2
< 0 for t > t2.

Then from the second equation of the model we have v(x∗, t) → 0 as t → ∞,

which is a contradiction. Hence, there exists M1 > 0 such that v(x, t) < M1

uniformly for all t > t1 and x ∈ Ω.
Since we are interested in the asymptotical behaviour of system (2), in this

sense region Γ enclosed by the positive axes, u = s0 and v = M1 is a positively
invariant set. And obviously, it attracts all solutions of (2). �
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Theorem 3.2. The positive equilibrium, E∗ of system (2) is globally asymp-

totically stable when it exists.

Proof. Denote the solution of (2) by (u(x, t), v(x, t)) with positive initial values.
Inspired by the work of Hsu [3] and of Hattaf and Yousfi [1], we construct a
Lyapunov function as follows.

Define

Q(u) =
τv∗(f(u)− k)

s0 − u
,

where f(u) = u
1+u +mS and k = mS + kd, and let

W (u, v) =

∫ u

u∗

Q(ξ)dξ +

∫ v

v∗

η − v∗

η
dη.

Then

E(t) =

∫

Ω

Wdx

is the Lyapunov function we need. Notice for any function h(u) and u satisfying
the Neumann boundary condition on ∂Ω we have

∫

Ω

h(u)∆udx =

∫

Ω

h(u)∇2udx = −
∫

Ω

∇h(u) · ∇udx+

∫

∂Ω

h(u)
∂u

∂n

= −
∫

Ω

∇h(u) · ∇udx = −
∫

Ω

h′(u)|∇u|2dx.

The straightforward calculation along the trajectory of (2) yields

dE(t)

dt
=

∫

Ω

(Wuut +Wvvt)dx

=

∫

Ω

{

Q(u)
(

d1∆u+
1

τ
(s0 − u)− uv

1 + u
−mSv

)

+
v − v∗

v

(

d2∆v +
uv

1 + u
− kdv

)

}

dx

= −
∫

Ω

(

d1Q
′(u)|∇u|2 + d2v

∗

v2
|∇v|2

)

dx(4)

+

∫

Ω

{

Q(u)
(1

τ
(s0 − u)− uv

1 + u
−mSv

)

(5)

+
v − v∗

v

( uv

1 + u
− kdv

)

}

dx.(6)

Next, we show that dE(t)
dt < 0, which together with Lemma 3.1 implies the

globally asymptotical stability of E∗.

Since Q(u) can be written as

Q(u) =
τv∗( u

1+u − kd)

s0 − u
,
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the derivative of Q with respective to u is

Q′(u) =
τv∗Q1(u)

(1 + u)2(s0 − u)2
, Q1(u) = s0 + u2 − kd(1 + u)2.

Obviously, Q1 is a quadratic polynomial in terms of u, with the coefficient of
the leading term 1− kd > 0. Then Q1(u), at u = kd

1−kd

, has a minimal value

Q1,min = Q1|u=kd/(1−kd) = s0 −
kd

1− kd
> 0.

Hence,
Q1(u) ≥ Q1,min > 0 and Q′(u) > 0,

which implies the integral over Ω in (4) is strictly less than zero. Furthermore,
we claim that

f1 = Q(u)
(1

τ
(s0 − u)− uv

1 + u
−mSv

)

+
v − v∗

v

( uv

1 + u
− kdv

)

=
τv

(

f(u)− k)

(s0 − u)

(1

τ
(s0 − u)− v∗f(u)

)

≤ 0.

(7)

If this claim is not true, then we have two subcases

(8)

{

f(u)− k > 0,
1
τ (s0 − u)− v∗f(u) > 0,

or

(9)

{

f(u)− k < 0,
1
τ (s0 − u)− v∗f(u) < 0,

since u < s0 and v > 0. In what follows, we prove the case of (8) can not
happen. Notice that

f(u) =
u

1 + u
+mS

is increasing about u and f(u∗) − k = 0. Then f(u) − k > 0 implies that

u > u∗ = kd

1−kd

. From the second equation of (8), we have

v∗ <
s0 − u

τf(u)
<

s0 − u

τf(u∗)
<

s0 − u∗

τ(kd +mS)
= v∗.

This contradiction implies that case (8) can not happen. We then show (9)
can not happen either. Otherwise, from the first equation we have f(u) < k =
f(u∗), which implies that 0 < u < u∗. From the second equation, we have

v∗ >
s0 − u

τf(u)
=

s0 − u

τ( u
1+u +mS)

>
s0 − u∗

τ(kd +mS)
= v∗.

Again, this is a contradiction implying that (9) is not true. Hence, f1 ≤ 0.
Therefore the integral in (5) and (6) is nonpositive. Then from the above
analysis, we know that

dE(t)

dt
< 0
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which implies that (u∗, v∗) is globally asymptotically stable. �

Remark 3.3. Theorem 3.2 shows the global non-existence of the non-constant
positive solution, namely globally system (2) has no spatial patterns.
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