• Title/Summary/Keyword: Reactive nitrogen

Search Result 450, Processing Time 0.023 seconds

Dynamic Runoff of Non-point Sources Pollutants from Agricultural Areas (농촌지역에서 유출시간에 따른 비점오염물질의 유출평가)

  • Yi, Qitao;Hur, Chinhyu;Kim, Youngchul
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.773-783
    • /
    • 2008
  • In this paper, data collected from 22 different rural watersheds during stormflow conditions were analyzed. Those watersheds consisted of forest and cultivated land. EMC data analysis indicates that as agricultural land use increases, EMC values of TSS, COD and TN clearly tends to increase, but TP does not show a significant increase. Pattern of the pollutographs mostly has a similarity in hydrograph shape except nitrogen which inherently shows a variability and complication. The fraction of soluble reactive-P to TP increases as cultivated land use increases while mobile-nitrogen portion was higher in the runoff from forested watersheds than agricultural areas. During stormflow, pollutograph of the nitrogen was determined mainly by change in Particle-TKN as other pollutants but its effect is thought to be masked by decrease of dissolved form of nitrogen due to the dilution.

Multiple Roles of Peroxiredoxins in Inflammation

  • Knoops, Bernard;Argyropoulou, Vasiliki;Becker, Sarah;Ferte, Laura;Kuznetsova, Oksana
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.60-64
    • /
    • 2016
  • Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammation. Indeed, peroxiredoxins are evolutionarily conserved peroxidases able to reduce, with high rate constants, hydrogen peroxide, alkyl hydroperoxides and peroxynitrite which are generated during inflammation. In this minireview, we point out different possible roles of peroxiredoxins during inflammatory processes such as cytoprotective enzymes against oxidative stress, modulators of redox signaling, and extracellular pathogen- or damage-associated molecular patterns. A better understanding of peroxiredoxin functions in inflammation could lead to the discovery of new therapeutic targets.

Effect of Active Species Generated from Flexible Plasma Patch on Polysaccharide Surface (플렉서블 플라즈마 패치에서 발생되는 활성종이 다당류 표면에 미치는 영향)

  • Lee, Yu Ri;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.133-137
    • /
    • 2018
  • Plasma devices such as jets, pencils, and torches have been developed as new tools that help penetration of target agents and applied to plasma medicine. However, these devices cannot be used in a large area. Therefore, we introduced a flexible plasma device, which can be treated of large area and designed as bendable plasma. In additional, in vitro model based on agarose gel was prepared that can be show effectiveness in the depth of penetration. Plasma treatment conditions such as power, time and distance can be optimized on the agarose gel wound model. The chemical structure of changed polysaccharides was predicted due to reactive excited atoms and molecules, UV photons, charged particles and reactive oxygen and nitrogen species (RONS).

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Kim, You Jung
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.288-294
    • /
    • 2016
  • Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Reactive nitrogen metabolism: a novel frontier in plant nitrogen metabolism

  • Sakamoto, Atsushi;Takahashi, Misa;Morikawa, Hiromichi
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.65-70
    • /
    • 2005
  • A growing body of evidence shows that nitric oxide $({\cdot}NO)$ and ${\cdot}NO-derived$ reactive nitrogen species (RNS) act as both plant physiological regulators and stressors. However, very little is known concerning metabolism of RNS in plant cells. In this paper, we explore a plant metabolic basis for RNS, with special emphasis on the possible relationship to nitrogen assimilation, and discuss the potential of the metabolic engineering for plant-biotechnological application.

  • PDF

Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan

  • Hayashi, Kentaro;Ono, Keisuke;Matsuda, Kazuhide;Tokida, Takeshi;Hasegawa, Toshihiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.202-216
    • /
    • 2017
  • Nitrogen (N) is an essential macronutrient. Thus, evaluating its flows and stocks in rice paddy ecosystems provides important insights into the sustainability and environmental loads of rice production. Among the N sources of paddy fields, atmospheric deposition and irrigation inputs remain poorly understood. In particular, insufficient information is available for atmosphere-rice paddy exchange of gaseous and particulate reactive N (Nr, all N species other than molecular N) which represents the net input or output through dry deposition and emission. In this study, we assessed the N inputs via atmospheric deposition and irrigation to a Japanese rice paddy area by weekly monitoring for 2 years with special emphasis on gas and particle exchange. The rice paddy during the cropping season acted as a net emitter of ammonia ($NH_3$) to the atmosphere regardless of the N fertilizer applications, which reduced the effects of dry deposition to the N input. Dry N deposition was quantitatively similar to wet N deposition, when subtracting the rice paddy $NH_3$ emissions from N exchange. The annual N inputs to the rice paddy were 3.2 to $3.6\;kg\;N\;ha^{-1}\;yr^{-1}$ for exchange, 8.1 to $9.8\;kg\;N\;ha^{-1}\;yr^{-1}$ for wet deposition, and 11.1 to $14.5\;kg\;N\;ha^{-1}\;yr^{-1}$ for irrigation. The total N input, 22.8 to $27.5\;kg\;N\;ha^{-1}\;yr^{-1}$, corresponded to 38% to 55% of the N fertilizer application rate and 53% to 67% of the brown rice N uptake. Monitoring of atmospheric deposition and irrigation as N sources for rice paddies will therefore be necessary for adequate N management.

Induction of Changes in Morphology, Reactive Nitrogen/Oxygen Intermediates and Apoptosis of Duck Macrophages by Aflatoxin B1

  • Cheng, Yeong-Hsiang;Shen, Tian-Fuh;Chen, Bao-Ji
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1639-1645
    • /
    • 2002
  • The purpose of this study was to investigate the effects of aflatoxin $B_1$ ($AFB_1$) on the ultracellular morphology alteration, apoptosis induction and reactive nitrogen and oxygen intermediates production of peritoneal macrophages (DPM) from mule ducks. The ducklings were purchased from a commercial hatchery, and were fed a corn-soybean based diet. As the ducklings were grown up to 3 wk of age, the Sephadex-elicited peritoneal exudative cells (PEC) were used as the source for duck peritoneal macrophages. The ultracellular morphology study showed that significant number of cells shifted from category I (normal cell with ruffled membrane) and II (cell membrane blebbing) to category III (cell membrane blebbing and even rupture) after DPM were incubated with $AFB_1$ ($20{\mu}g/ml$) for 12 to 48 h. When DPM were exposed to $AFB_1$ in vitro, the production of NO, $H_2O_2$ and $O_2{^-}$ in macrophages was reduced after 12-48 h incubation with previous LPS stimulation. There was a DNA laddering pattern observed in DPM incubated with $AFB_1$ 5, 10, 20, 50 or $100{\mu}g/ml$ for 12 h. Evidence also revealed that the percentage of apoptotic cells was increased along with the elevation of $AFB_1$ concentration. The results suggest that $AFB_1$ exposure causes duck macrophages going on apoptotic pathway through evidence of ultracellular morphology alteration and DNA laddering in agarose electrophoresis. The production of reactive nitrogen and oxygen intermediates of duck macrophages also depressed after $AFB_1$ exposure, and this implied that $AFB_1$ could cause deteriorated functions of bacteriocidal and tumoricidal activity in duck macrophages.

The Formation of Reactive Species on the Nitrogen Oxide in the Ultraviolet Photolysis of N-Nitrosodimethylamine (N -Nitrosodimethylamine의 자외선 광분해 시 질소산화물 생성에 미치는 반응성 화학종의 형성)

  • Kwon, Joongkuen;Kim, Jongoh;Kwon, Bumgun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Because N-Nitrosodimethylamine(NDMA) is well-known as a potential carcinogen, extensive research has addressed its treatment by ultraviolet(UV) and its degradation pathway. However, the detailed mechanism by which NDMA is photolyzed to form oxidized products, i.e., ${NO_2}^-$ and ${NO_3}^-$, is still not understood. This study reveals a key reactive species during the photolysis of NDMA. The study on a key reactive species was indirectly performed with the formation of nitrogen oxidized products and reactions between methanol and an unknown reactive species formed during the photolysis of NDMA. The peroxynitrite($ONOO^-$) generated by the direct UV photolysis of NDMA would be identified as a key reactive species in oxidizing nitrogen intermediates to ${NO_2}^-$and ${NO_3}^-$.

Scavenging Activities of Reactive Oxygen and Nitrogen Species by Junglans sinensis (호도(胡桃)의 활성산소 및 활성질소 제거 기전)

  • Jeong Ji-Cheon;Bae Sung-Min;Shin Hyeon-Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1615-1621
    • /
    • 2005
  • Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are widely implicated in the aging process and age-related diseases. The present study was carried out to investigate scavenging activities of Junglans sinensis extract and its subfraction using fluorescent probes, DCF-DA, DAF-2 and DHR 123. Jungians sinensis was washed and crushed. The crushed Junglans sinensis was extracted 3times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 16 g. Scavenging activities of $ONOO^-$ was measured by Kooy' method and ROS was measured by DCFDA assay. Junglans sinensis had the marked scavenging activites of $ONOO^-$, NO and $O_2^-$. Junglans sinensis scavenged $ONOO^-$ through electron donation and dose-dependently inhibited the nitration of bovine serum albumin by $ONOO^-$. Junglans sinensis also had ROS scavenging activity. Especially, ethylacetate fraction of Junglans sinensis showed the most effective scavenging activities for ROS and RNS. These results suggest that Junglans sinensis might be developed as an effective ROS and RNS scavenger Therefore, Junglans sinensis might be used as a preventive agent for the aging and relevant to aging of illness.