The Formation of Reactive Species on the Nitrogen Oxide in the Ultraviolet Photolysis of N-Nitrosodimethylamine

N -Nitrosodimethylamine의 자외선 광분해 시 질소산화물 생성에 미치는 반응성 화학종의 형성

  • 권중근 (조선이공대학 생명환경화공과) ;
  • 김종오 (강릉원주대학교 공과대학 토목공학과) ;
  • 권범근 (조선이공대학 생명환경화공과)
  • Published : 2012.02.01

Abstract

Because N-Nitrosodimethylamine(NDMA) is well-known as a potential carcinogen, extensive research has addressed its treatment by ultraviolet(UV) and its degradation pathway. However, the detailed mechanism by which NDMA is photolyzed to form oxidized products, i.e., ${NO_2}^-$ and ${NO_3}^-$, is still not understood. This study reveals a key reactive species during the photolysis of NDMA. The study on a key reactive species was indirectly performed with the formation of nitrogen oxidized products and reactions between methanol and an unknown reactive species formed during the photolysis of NDMA. The peroxynitrite($ONOO^-$) generated by the direct UV photolysis of NDMA would be identified as a key reactive species in oxidizing nitrogen intermediates to ${NO_2}^-$and ${NO_3}^-$.

NDMA는 잠재적인 발암 물질로 잘 알려져 있기 때문에 UV를 활용한 처리기술과 분해경로에 대해 많은 연구가 이루어졌다. 그러나 NDMA가 ${NO_2}^-$, ${NO_3}^-$ 와 같은 산화물을 형성하는 메커니즘은 아직 명확하게 알려져 있지 않다. 본 연구에서는 NDMA의 광반응에 의해 생성되는 핵심 반응기들을 검토하였다. 주요 반응기들에 대한 연구는 질소 산화물들의 형성과 메탄올과 NDMA의 광분해에 의해 형성되는 미지의 반응기들 사이에서의 반응을 통하여 간접적으로 수행하였다. NDMA의 직접적인 UV 광반응에 의해서 생성된 $ONOO^-$ 가 질소 산화물(중간생성물)들의 산화로 인한 ${NO_2}^-$${NO_3}^-$ 의 핵심 반응기인 것으로 확인되었다.

Keywords

References

  1. Asmus, K.D., Mockel, H. and Henglein, A.(1973), Pulse Radiolytic Study of the Site of Hydroxyl Radical Attack on Aliphatic Alcohols in Aqueous Solution, The Journal of Physical Chemistry, Vol. 77, No. 10, pp. 1218-1221. https://doi.org/10.1021/j100629a007
  2. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., Freeman, B. A.(1990), Apparent Hydroxyl Radical Production by Peroxynitrite: Implications for Endothelial Injury from Nitric Oxide and Superoxide. Proceedings of National Academy Science, Vol. 87, pp. 1620-1624. https://doi.org/10.1073/pnas.87.4.1620
  3. Charrois, J. W. A., Arend, M. W., Froese, K. L. and Hrudey, S. E.(2004), Detecting N-Nitrosamines in Drinking Water at Nanogram per Liter Levels Using Ammonia Positive Chemical Ionization, Environmental Science & Technology, Vol. 38, No. 18, pp. 4835-4841. https://doi.org/10.1021/es049846j
  4. Chen, Z. and Valentine, R. L.(2007), Fromation of N-Nitrosodimethylamine( NDMA) from Humic Substances in Natural Water, Environmental Science & Technology, Vol. 41, No. 17, pp. 6059-6065. https://doi.org/10.1021/es0705386
  5. Chen, Z. and Valentine, R. L.(2008), The Influence of the Pre-Oxidation of Natural Organic Matter on the Formation of N-Nitrosodimethylamine(NDMA), Environmental Science & Technology, Vol. 42, No. 14, pp. 5062-5067. https://doi.org/10.1021/es8006673
  6. Lee, C., Choi, W., Kim, Y. G. and Yoon, J.(2005a), UV Photolytic Mechanism of N-Nitrosodimethylamine in water: Dual Pathways to Methylamine versus Dimethylamine, Environmental Science & Technology, Vol. 39, No. 7, pp. 2101-2106. https://doi.org/10.1021/es0488941
  7. Lee, C., Choi, W. and Yoon, J.(2005b), UV Photolytic Mechanism of N-itrosodimethylamine in water: Roles of Dissolved Oxygen and Solution pH, Environmental Science & Technology, Vol. 39, No. 24, pp. 9702-9709. https://doi.org/10.1021/es051235j
  8. Mezyk, S. P., Cooper, W. J., Madden, K. P. and Bartels, D. M.(2004), Free Radical Destruction of N-Nitrosodimethylamine in Water. Environmental Science & Technology, Vol. 38, No. 11, pp. 3161-3167. https://doi.org/10.1021/es0347742
  9. Mirvish, S. S.(1975), Formation of N-Nitroso Compounds: Chemistry, Kinetics, and in Vivo Occurrence, Toxicology & Applied Pharmacology, Vol. 31, pp. 325-351. https://doi.org/10.1016/0041-008X(75)90255-0
  10. Mitch, W. A. and Sedlak, D. L.(2002), Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination, Environmental Science & Technology, Vol. 36, No. 4, pp. 588-595. https://doi.org/10.1021/es010684q
  11. Mitch, W. A. and Sedlak, D. L.(2004), Characterization and Fate of N-Nitrosodimethylamine Precursors in Municipal Wastewater Treatment Plants, Environmental Science & Technology, Vol. 38, No. 5, pp. 1445-1454. https://doi.org/10.1021/es035025n
  12. Pitts, J. N., Jr., Grosjean, D., Cauwenberghe, K. V., Schmid, J. P. and Fitz, D. R.(1978), Photooxidation of Aliphatic Amines Under Simulated Atmospheric Conditions: Formation of Nitrosamines, Nitramines, Amides, and Photochemical Oxidant, Environmental Science & Technology, Vol. 12, No. 8, pp. 946-953. https://doi.org/10.1021/es60144a009
  13. Plumlee, M. H. and Reinhard, M.(2007), Photochemical Attenuation of N-Nitrosodimethylamine(NDMA) and other Nitrosamines in Surface Water, Environmental Science & Technology, Vol. 41, No. 17, pp. 6170-6176. https://doi.org/10.1021/es070818l
  14. Schmidt, C. K. and Brauch, H-J.(2008), N,N-Dimethylsulfamide as Precursor for N-Nitrosodi methylamine(NDMA) Formation upon Ozonation and its Fate During Drinking Water Treatment, Environmental Science & Technology, Vol. 42, No. 17, pp. 6340-6346. https://doi.org/10.1021/es7030467
  15. Sharpless, C. M. and Linden, K. G.(2003), Experimental and Model Comparisons of Low-and Medium-Pressure Hg Lamps for the Direct and HO Assisted UV Photodegradation of N-Nitrosodimethylamine in Simulated Drinking Water, Environmental Science & Technology, Vol. 37, No. 9, pp. 1933-1940. https://doi.org/10.1021/es025814p
  16. Stefan, M. and Bolton, J. R.(2002), UV Direct Photolysis of N-Nitrosodimethylamine (NDMA): Kinetic and Product Study, Helvetica Chimica Acta, Vol. 85, pp. 1416-1426. https://doi.org/10.1002/1522-2675(200205)85:5<1416::AID-HLCA1416>3.0.CO;2-I