• Title/Summary/Keyword: Reaction torque

Search Result 169, Processing Time 0.025 seconds

DEVELOPMENT OF AN ACTIVE FRONT STEERING SYSTEM

  • Kim, S.J.;Kwak, B.H.;Chung, S.J.;Kim, J.G.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 2006
  • We have developed an active front steering system(AFS) with a planetary gear train, which can vary the steering gear ratio according to the vehicle speed and improve vehicle stability by superimposing steering angle. We conducted vehicle tests showing that co-operated control of AFS with ESP can improve vehicle stability by direct control of tire slip angle and that steering reaction torque during AFS intervention can be compensated by torque compensation using electric power steering.

Effect of Muscle Function and Muscular Reaction of Knee Joint in the Twenties on the Whole Body Vibration Exercise (전신진동운동이 20대 성인남녀의 슬관절 근기능과 근반응성에 미치는 영향)

  • Kang, Seung Rok;Jeong, Gu Young;Bae, Jong Jin;Min, Jin Young;Yu, Chang Ho;Kim, Jung Ja;Kwon, Tae Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.762-768
    • /
    • 2013
  • This study investigated the effect of whole-body vibration on muscle function and muscular reaction in the knee joint. We recruited thirty healthy subjects and divided them into a training group, who experienced whole-body vibration, and a control group, who did not. The training group performed whole-body vibration exercises for 30 min per day, 3 days a week, for 8 weeks. We measured knee joint torque to estimate muscle strength and reaction, using BIODEX System 3. Knee joint peak torque and total work performed increased significantly in the training group, and muscle acceleration time decreased. These results suggest that stimulation by whole-body vibration can improve muscle strength and reaction by improving muscle tone and increasing blood temperature and flow speed in muscular fiber. Our results also indicate that 4 weeks of exercise with whole-body vibration is required to improve the reaction response, and six weeks to improve strength.

Evaluation of Operational Conditions and Power Consumption of a Bioattritor for Enzymatic Saccharification of Uncooked Starch (무증자 전분당화용 분쇄마찰매체 함유 효소반응기의 조작조건과 동력소모의 검토)

  • 이용현;박진서
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.349-357
    • /
    • 1989
  • Uncooked starch can be effectively saccharified in an enzyme reaction system containing attrition-milling media. To develope the high efficiency bioattritor, an agitated bead type bioreactor was constructed, and its effectiveness was evaluated. The optimal operation condition of bioattritor was found to be 300 g glass bead/L, 200 rpm, standard type impeller for 220 g/L of uncooked corn starch. The torque under the various operational conditions were also measured. The interrelation-ship between energy consumption for agitation of attrition-milling media and enhanced extent of saccharification of uncooked starch was evaluated, Power consumption was measured to be around 1.53 watt/L under the optimal operation condition. The attrition coupled enzyme reaction system is identified to tie a very excellent energy saying process for saccharification of uncooked starch, and seems to have a bright prospect of industrial application.

  • PDF

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

A study on the motion trajectory planning and dynamic simulation of biped walking robot (이족 보행 로보트의 운동 궤적 계획 및 동적 시뮬레이션에 관한 연구)

  • 김창부;김웅태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.959-964
    • /
    • 1992
  • This study treats the method for kinematic modeling of the biped walking robot, for synthesizing various gait trajectories, and for calculating adequate values of the joint torque inside the stable region. To synthesize various and anthropomorphic walking easily, the gait trajectory is specified by a set of ten walking prameters, and the trunk motion equation is derived by the zero moment point and the gait trajectory. By distributing ground reaction force and moment reduced at the zero moment point to the both feet, the joint torque equation can be derived readily, and according to this equation, the joint torque to stable walking can be computed.

  • PDF

PMSM Vector Control for Instantaneous Torque Control (순시 토크 제어를 위한 IPMSM 벡터 제어)

  • Lee, Nayoung;Park, Jeehyun;Lee, Jaeyeon;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.410-411
    • /
    • 2018
  • 매입형 영구자석 동기전동기(Interior Permanent Magnet Synchronous Motor, IPMSM)는 효율이 높고 출력밀도가 크며 고속에서의 동특성이 뛰어나 순시 토크 제어가 요구되는 고성능 제어분야에 유리하다. 최근 IPMSM은 전기자동차 등의 다양한 산업분야에 응용되어 많은 연구와 관심이 집중되고 있다. 하지만 IPMSM은 구조적인 특징 때문에 리액션 토크(Reaction Torque)와 별도로 릴럭턴스 토크(Reluctance Torque)가 추가적으로 형성되어 제어 시 별도의 계산이 필요하다. 따라서 본 논문에서는 IPMSM 순시 토크 제어를 위해 릴럭턴스 토크와 리액션 토크를 제어하였고, 그 결과를 시뮬레이션을 통해 검증하였다.

  • PDF

Experimental Planning for Realistic Force Feedback in a Bicycle Simulator

  • Hun, Yang-Gi;Soo, Kwon-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.117.5-117
    • /
    • 2001
  • This paper presents the key idea of handlebar reaction force and pedal resistance force generation in creating life-like feeling in KAIST bicycle simulator. Also, it provides methods to evaluate its reality level with given reaction force profile. In KAIST bicycle simulator, the pedal resistance force and the handlebar reaction force are calculated using the bicycle dynamic model. With the information handlebar angle, rider´s pedaling torque and road profile transmitted from the handlebar system, the pedal system and the visual part, the bicycle dynamics engine calculates the handlebar reaction force and the pedal velocity. The handlebar system and the pedal resistance system generate reaction force and resistance force transmitted from dynamics engine. However to make more realistic riding feeling ...

  • PDF

Influence of valve plate configuration on torque ripple of a bi-directional bent-axis type hydraulic piston pump (양방향 회전형 사축식 유압 피스톤 펌프의 벨브 플레이트 형상이 토크 맥동에 주는 영향)

  • Kim, Sung-Hun;Hong, Yeh-Sun;Kim, Doo-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.231-237
    • /
    • 2007
  • The torque ripple of the hydraulic pumps for the Electro-hydrostatic Actuators can disturb the cylinder position control under slewing speed operation condition. In principle, the periodic change of the reaction torque generated by a piston type pump is highly dependent on the waveform of its cylinder chamber pressure. In case of uni-directional pumps operating at constant speed, the transient overshoot and rising slope of the cylinder pressure can be adjusted by the precompression angle and notch shape of their valve plates. Therefore, the influence of the valve plate geometry on the torque ripple magnitude of a bent-axis type piston pump for EHA application was investigated in this study. The results showed that any improvement of the torque ripple of such a bi-directional pump can not be achieved by modifying the valve plate geometry, regardless of its operation speed.

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

아리랑2호 반작용휠의 성능 및 기능 시험

  • Kwon, Jae-Wook;Kim, Young-Yun;Choi, Jong-Yeon;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.7-10
    • /
    • 2004
  • KOMPSAT-2 needs fine accuracy attitude control when it is operated in Science mode. Reaction Wheel is a necessary part of fine controlling the attitude of satellite. The reaction Wheel Assembly(RWA) is a device which provides reaction torque for attitude-control of spacecraft. It consists of an electric motor, a rotating flywheel, motor control device electrics, commutation electronics and associated power converters. This document identifies what activities to be carried out to integrate the RW#1 for ETB tests.

  • PDF