• Title/Summary/Keyword: Reaction parameter

Search Result 477, Processing Time 0.022 seconds

Comparison of Alternate Approaches for Reversible Geminate Recombination

  • Khokhlova, Svetlana S.;Agmon, Noam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.1020-1028
    • /
    • 2012
  • This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in Laplace space for an initially bound pair, which can dissociate, diffuse or undergo "sticky" recombination. We show that the same expression for the binding probability holds also for "mixed" reaction products. Two different derivations are pursued, yielding seemingly different expressions, which nevertheless coincide numerically. These binding probabilities and their Laplace transforms are compared graphically with those from the contact reactivity model and a previously suggested coarse grained approximation. Mathematically, all these Laplace transforms conform to a single generic equation, in which different reactionless Green's functions, g(s), are incorporated. In most of parameter space the sensitivity to g(s) is not large, so that the binding probabilities for the volume and contact reactivity models are rather similar.

A Lagrangian Based Scalar PDF Method for Turbulent Combustion Models

  • Moon, Hee-Jang;Borghi, Roland
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1470-1478
    • /
    • 2004
  • In this paper, a new 'presumed' Probability Density Function (PDF) approach coupled with a Lagrangian tracking method is proposed for turbulent combustion modeling. The test and the investigation of the model are conducted by comparing the model results with DNS data for a premixed flame subjected in a decaying turbulent field. The newly constructed PDF, which incorporates the instantaneous chemical reaction term, demonstrates consistent improvement over conventional assumed PDF models. It has been found that the time evolution of the mean scalar, the variance and the mean reaction rate are strongly influenced by a parameter deduced by a Lagrangian equation which takes into account explicitly the local reaction rate. Tests have been performed for a moderate Damkohler number, and it is expected the model may cover a broader range of Damkohler number. The comparison with the DNS data demonstrates that the proposed model may be promising and affordable for implementation in a moment-equation solver.

Development of a High-power Ultrasonic System for Sonochemistry Reaction (음향화학 반응용 강력초음파 개발)

  • Lee, Yang-Lae;Kim, Hyun-Se;Baek, Min-Hyuck
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.142-148
    • /
    • 2013
  • High-power ultrasonic promotes a chemical reaction by its own energy, thus it has been used for sonochemistry applications. For example, it has been mostly used for mixing, reaction catalyst, dispersion and disintegration. High-power ultrasonic transducer is made with structure based on a Bolt-clamped Langevin type Transducer (BLT), But it has difficulty in the development because degradation of piezoelectric ceramic by the heat generation of BLT. In this study, for a development of the transducer of 25 kHz and 1000 W used in sonochemistry and industrial cleaning, BLT with a hole in its center and tubular type waveguide of the transducer were designed based on finite element method (FEM). The transducer was fabricated based on the design parameter, and the impedance characteristics are measured experimentally and compared with the numerical results.

POSITIVE SOLUTIONS OF A REACTION-DIFFUSION SYSTEM WITH DIRICHLET BOUNDARY CONDITION

  • Ma, Zhan-Ping;Yao, Shao-Wen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.677-690
    • /
    • 2020
  • In this article, we study a reaction-diffusion system with homogeneous Dirichlet boundary conditions, which describing a three-species food chain model. Under some conditions, the predator-prey subsystem (u1 ≡ 0) has a unique positive solution (${\bar{u_2}}$, ${\bar{u_3}}$). By using the birth rate of the prey r1 as a bifurcation parameter, a connected set of positive solutions of our system bifurcating from semi-trivial solution set (r1, (0, ${\bar{u_2}}$, ${\bar{u_3}}$)) is obtained. Results are obtained by the use of degree theory in cones and sub and super solution techniques.

A Parameter Study for Negative Reactions of Single Span Curved Bridges (단경간 곡선교의 부반력에 관한 매개변수 연구)

  • 김진석;이학수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.381-387
    • /
    • 2002
  • Curved bridges are composed of curved members which have certain curvatures, comparing to straight bridges. Therefore, their behavior is quite different from one of the straight bridges, mainly due to the geometric characteristics of the curved bridges. In this paper, the curved bridges consisted of the single box-girder span are investigated to study the effects of negative reaction forces. The parameters considered in this study are span lengths, angles of curvature, and the number of shoes. Midas/civil computer program was used for the analysis of the curved bridges. The analysis results show that negative reaction forces are not created with one shoe installed. When two shoes are provided, on the other hands, the uplift forces are developed at the inside shoe. It is also concluded that the increasing ratio of negative reaction forces becomes larger, as the angles of curvature increase, and the elongation of span lengths turns out to increase the magnitudes of the uplift forces.

  • PDF

Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with newtonian heat and mass conditions

  • Qayyum, Sajid;Hayat, Tasawar;Shehzad, Sabir A.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1636-1644
    • /
    • 2017
  • The main purpose of this article is to describe the magnetohydrodynamic stagnation point flow of Walter-B nanofluid over a stretching sheet. The phenomena of heat and mass transfer are based on the involvement of thermal radiation and chemical reaction. Characteristics of Newtonian heating are given special attention. The Brownian motion and thermophoresis models are introduced in the temperature and concentration expressions. Appropriate variables are implemented for the transformation of partial differential frameworks into sets of ordinary differential equations. Plots for velocity, temperature, and nanoparticle concentration are displayed and analyzed for governing parameters. The skin friction coefficient and local Nusselt and Sherwood numbers are studied using numerical values. The temperature and heat transfer rate are enhanced within the frame of the thermal conjugate parameter.

Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 오병환;차수원;신경준;하재담;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

The Growth and Behavior of a Virtual Life by using Genetic Algorithm

  • Kwon, Min-Su;Kim, Do-Wan;Hoon Kang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.621-626
    • /
    • 2003
  • In this paper, we modeled a virtual life (VL) that reacts to the user s action according to its own behavioral characteristics and grows itself. We established some conditions with which such a VL is designed. Genetic Algorithm is used for the growth process that changes the VL s properties. In this process, the parameter values of the VL s properties are encoded as one chromosome, and the GA operations change this chromosome. The VL s reaction to the user s action is determined by these properties as well as the general expectation of each reaction. These properties are evaluated through 5 fitness measures so as to deal with multi-objective criteria. Here, we present the simulation of the growth Process, and show some experimental results.

Effect of Process Parameters of UV Enhanced Gas Phase Cleaning on the Removal of PMMA (Polymethylmethacrylate) from a Si Substrate

  • Kwon, Sung Ku;Kim, Do Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.204-207
    • /
    • 2016
  • Experimental study of UV-irradiated O2/H2 gas phase cleaning for PMMA (Polymethylmethacrylate) removal is carried out in a load-locked reactor equipped with a UV lamp and PBN heater. UV enhanced O2/H2 gas phase cleaning removes polymethylmethacrylate (PMMA) better at lower process pressure with higher content of H2. O2 gas compete for UV (184.9 nm) absorption with PMMA producing O3, O(1D) and lower dissociation of PMMA. In our experimental conditions, etching reaction of PMMA at the substrate temperature between 75℃ and 125℃ had activation energy of about 5.86 kcal/mol indicating etching was controlled by surface reaction. Above the 180℃, PMMA removal was governed by a supply of reaction gas rather than by substrate temperature.

DUFOUR AND HEAT SOURCE EFFECTS ON RADIATIVE MHD SLIP FLOW OF A VISCOUS FLUID IN A PARALLEL POROUS PLATE CHANNEL IN PRESENCE OF CHEMICAL REACTION

  • VENKATESWARLU, M.;BABU, R. VASU;SHAW, S.K. MOHIDDIN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.245-275
    • /
    • 2017
  • The present investigation deals, Dufour and heat source effects on radiative MHD slip flow of a viscous fluid in a parallel porous plate channel in presence of chemical reaction. The non-linear coupled partial differential equations are solved by using two term perturbation technique subject to physically appropriate boundary conditions. The numerical values of the fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. By increasing the slip parameter at the cold wall the velocity increases whereas the effect is totally reversed in the case of shear stress at the cold wall. It is observed that the effect of Dufour and heat source parameters decreases the velocity and temperature profiles.