Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.1020

Comparison of Alternate Approaches for Reversible Geminate Recombination  

Khokhlova, Svetlana S. (The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem)
Agmon, Noam (The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem)
Publication Information
Abstract
This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in Laplace space for an initially bound pair, which can dissociate, diffuse or undergo "sticky" recombination. We show that the same expression for the binding probability holds also for "mixed" reaction products. Two different derivations are pursued, yielding seemingly different expressions, which nevertheless coincide numerically. These binding probabilities and their Laplace transforms are compared graphically with those from the contact reactivity model and a previously suggested coarse grained approximation. Mathematically, all these Laplace transforms conform to a single generic equation, in which different reactionless Green's functions, g(s), are incorporated. In most of parameter space the sensitivity to g(s) is not large, so that the binding probabilities for the volume and contact reactivity models are rather similar.
Keywords
Diffusion; Feynman-Kac equation; Geminate reaction; Reversibility;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Luzar, A. Private communication.
2 Abate, J.; Whitt, W. ORSA J. Comput. 1995, 7, 36-43.   DOI   ScienceOn
3 Agmon, N.; Weiss, G. H. J. Chem. Phys. 1989, 91, 6937-6942.   DOI
4 Agmon, N.; Szabo, A. J. Chem. Phys. 1990, 92, 5270-5284.   DOI
5 Kim, H.; Shin, K. J. Phys. Rev. Lett. 1999, 82, 1578-1581.   DOI   ScienceOn
6 Gopich, I. V.; Agmon, N. J. Chem. Phys. 1999, 110, 10433-10444.   DOI   ScienceOn
7 Pines, E.; Huppert, D.; Agmon, N. J. Chem. Phys. 1988, 88, 5620- 5630.   DOI
8 Agmon, N. J. Phys. Chem. A 2005, 109, 13-35.   DOI   ScienceOn
9 Markovitch, O.; Agmon, N. J. Chem. Phys. 2008, 129, 084505.   DOI   ScienceOn
10 Chen, H.; Voth, G. A.; Agmon, N. J. Phys. Chem. B 2010, 114, 333-339.   DOI   ScienceOn
11 Karlin, S.; Taylor, H. M. A Second Course in Stochastic Processes; Academic Press: San-Diego, 1981.
12 Kac, M. On Some Connections between Probability Theory and Differential and Integral Equations. Proc. 2nd Berkeley Symp. Mathematical Statistics and Probability, Berkeley, 1951; pp 189- 215.
13 Majumdar, S. N. Curr. Sci. 2005, 89, 2076-2092.
14 Agmon, N. J. Phys. Chem. A 2011, 115, 5838-5846.   DOI   ScienceOn
15 Agmon, N. Phys. Chem. Chem. Phys. 2011, 13, 16548-16557.   DOI   ScienceOn
16 Gopich, I. V.; Solntsev, K. M.; Agmon, N. J. Chem. Phys. 1999, 110, 2164-2174.   DOI   ScienceOn
17 Luzar, A.; Chandler, D. Nature 1996, 379, 55-57.   DOI
18 Luzar, A. J. Chem. Phys. 2000, 113, 10663-10675.   DOI   ScienceOn
19 Krissinel', E. B.; Agmon, N. J. Comput. Chem. 1996, 17, 1085- 1098.   DOI
20 von Smoluchowski, M. Z. Physik. Chem. 1917, 92, 129-168.
21 Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: Oxford, 1959.
22 Rice, S. A. Diffusion-Limited Reactions; Elsevier: Amsterdam, 1985; Vol. 25.
23 Collins, F. C.; Kimball, G. E. J. Colloid Sci. 1949, 4, 425-437.   DOI   ScienceOn
24 Wilemski, G.; Fixman, M. J. Chem. Phys. 1973, 58, 4009-4019.   DOI
25 Goodrich, F. C. J. Chem. Phys. 1954, 22, 588-594.   DOI
26 Agmon, N. J. Chem. Phys. 1984, 81, 2811-2817.   DOI