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POSITIVE SOLUTIONS OF A REACTION-DIFFUSION

SYSTEM WITH DIRICHLET BOUNDARY CONDITION

Zhan-Ping Ma and Shao-Wen Yao

Abstract. In this article, we study a reaction-diffusion system with

homogeneous Dirichlet boundary conditions, which describing a three-
species food chain model. Under some conditions, the predator-prey sub-

system (u1 ≡ 0) has a unique positive solution (u2, u3) . By using the
birth rate of the prey r1 as a bifurcation parameter, a connected set of

positive solutions of our system bifurcating from semi-trivial solution set

(r1, (0, u2, u3)) is obtained. Results are obtained by the use of degree
theory in cones and sub and super solution techniques.

1. Introduction

Ecological systems are characterized by the interactions of different species
within a fluctuating natural environment. Among various models describing
different interactions, the three species models are fundamental building blocks
of large scale ecosystems. To clarify the local or global and short-term or long-
term behavior of ecosystems, it is essential to understand the interacting dy-
namics of three species models. Krikorian [16] has classified all three-species
Lotka-Volterra models into four types in all 34 cases: food chains, two preda-
tors competing for one prey, one predator acting on two preys, and loops.
In particular, the interest in three-species food chain models stems from the
seminal work of Hastings and Powell [10] in which they show chaotic dynam-
ics in a food chain model. Since then, there have been some interesting and
significant results on the dynamics of three-species food chain systems with
spatially homogeneous situations [4, 8, 9, 13] and spatially inhomogeneous sit-
uations [19, 20, 22, 23, 27] for last two decades. It is known in literature that
the dynamics of the three-species model is much more complicated than that
of the two-species model in a relative sense. Even for the ODE system, the
dynamic behavior of positive solutions can be very complicated (see [8]). Con-
sequently, multiple-species models will continue to be one of dominant themes

Received April 20, 2019; Revised August 20, 2019; Accepted September 19, 2019.
2010 Mathematics Subject Classification. 35K57, 35B32, 92D25.
Key words and phrases. Reaction-diffusion, food chain model, positive solutions, bifurca-

tion, degree theory.
This work was financially supported by the NSF of China 11701243.

c©2020 Korean Mathematical Society

677



678 Z.-P. MA AND S.-W. YAO

in both ecology and mathematical ecology due to its universal existence and
importance.

In this paper, we consider the following Lotka-Volterra food chain model

(1)

 u1t −∆u1 = u1 (r1 − a11u1 − a12u2) ,
u2t −∆u2 = u2 (r2 + a21u1 − a22u2 − a23u3) ,
u3t −∆u3 = u3 (r3 + a32u2 − a33u3) in Ω× (0,∞),

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, ∆ is the Lapla-
cian operator. rj , ajj , j = 1, 2, 3, a12, a21, a23, a32 are all positive constants. uj ,
j = 1, 2, 3, stands for the population density of prey, mid-level predator and top
predator species, respectively. rj is the birth rate of the prey, mid-level predator
and top predator, respectively; ajj measures the intra-specific competition of
the prey, mid-level predator and top predator, respectively; a12 and a23 denote
the predation rate of per capita of the mid-level predator and top predator,
respectively; a21 and a32 represent the conversion rate of the prey to the mid-
level predator and the mid-level predator to the top one, respectively. When
the system (1) is subjected to homogeneous Neumann boundary conditions,
by Lyapunov functional arguments, Xie [25] proved that the unique constant
positive steady-state is globally asymptotically stable even if u1, u2 and u3

possess different diffusion coefficients, which indicated that no spatiotemporal
patterns happen in the system (1). Whereas, if some cross-diffusion terms are
introduced in the system (1), Ma et al. [21] investigated the existence of non-
constant positive steady-states as well as the Hopf bifurcation. They proved
that the stationary patterns and inhomogeneous periodic oscillatory patterns
emerged.

In this paper we assume that the boundary is hostile and hence no individuals
would choose to leave there and consequently, we shall subsequently consider
homogeneous Dirichlet boundary conditions:

(2) u1 = u2 = u3 = 0 on ∂Ω× (0,∞).

One aspect of great interest for a model with multi species interactions is
whether the various species can coexist. An important early discovery on the
problem of positive coexistence of 2× 2 systems is the following: the instabil-
ity of the marginal densities, i.e., the individual species with the other species
absent, implies the positive coexistence of both species provided that the in-
teracting species are a priori bounded. See, for instance [2,3,5,7,26]. However,
there is little concern on the problem of 3× 3 systems [11, 17,18]. The goal of
this paper is to establish sufficient conditions for the existence of componen-
twise strictly positive steady-state solutions of (1) with boundary conditions
(2). Thus we will concentrate on the following elliptic system

(3)


−∆u1 = u1 (r1 − a11u1 − a12u2) ,
−∆u2 = u2 (r2 + a21u1 − a22u2 − a23u3) ,
−∆u3 = u3 (r3 + a32u2 − a33u3) in Ω,
u1 = u2 = u3 = 0 on ∂Ω.
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Our analysis is based on the degree theory in cones and sub- and super solution
techniques.

The plan of the paper is as follows: In Section 2, we give some known results
which are required later. In Section 3, we discuss the unique positive solution
(u2, u3) of the predator-prey subsystem (u1 ≡ 0). In Section 4, By regarding
r1 as a bifurcation parameter, we study the bifurcation solutions of (3) which
are relative to (0, u2, u3). We end with concluding remarks in Section 5.

2. Preliminaries

Let λ1 be the principal eigenvalue of the following problem{
−∆φ = λφ in Ω,
φ = 0 on ∂Ω.

Let m(x) ∈ C
(
Ω
)

satisfy that m(x0) > 0 for some x0 ∈ Ω. Then by Theorem
1 of [12], the boundary value problem

(4)

{
−∆ϕ = λmϕ in Ω,

ϕ = 0 on ∂Ω

has a principal eigenvalue λ̃1 (m) > 0, and it is the only positive eigenvalue of
(4) with a positive eigenfunction. For every p > 0 such that m + p > 0 in Ω,

define an operator Lp = (−∆ + p)
−1

(m+ p). Let R (Lp) denote the spectral
radius of Lp.

Lemma 2.1. If λ̃1 (m) = 1, then R (Lp) = 1.

Proof. If λ̃1 (m) = 1, then there exists ϕ > 0 such that (4) holds for λ = 1.
This implies that ϕ = Lpϕ. Therefore, R (Lp) = 1. �

Consider the boundary value problem

(5)

{
−∆u = au− u2 in Ω,
u = 0 on ∂Ω.

Lemma 2.2. (i) If a ≤ λ1, then (5) has no nontrivial solution.
(ii) If a > λ1, then there exists a unique positive solution θa of (5) and

0 < θa < a. Also, a < b implies that θa < θb.

Proof. See [3] for the proof. �

For a > λ1 and 0 < k (< 1), we consider

(6)

{
−∆u = u (a− u± kθa) in Ω,
u = 0 on ∂Ω.

Lemma 2.3. (1± k) θa is the unique positive solution of (6).



680 Z.-P. MA AND S.-W. YAO

Proof. The existence is obvious. For the uniqueness, we only give the proof
of the first case. The second case can be shown similarly. Assume that there
exists another positive solution u0 of (6) with u0 6≡ (1 + k) θa.

Let u = u0 − (1 + k) θa. Then u 6≡ 0 satisfies the following boundary value
problem {

−∆u = u (a− u0 − θa) in Ω,
u = 0 on ∂Ω.

Then

(7)

∫
Ω

(−∆u− u (a− u0 − θa))udx = 0.

On the other hand, since θa is the unique positive solution of (5), it follows
that for the eigenvalue problem{

−∆u− u (a− θa) = λu in Ω,
u = 0 on ∂Ω,

zero is the least eigenvalue. Due to the variational characterization of the least
eigenvalue, we have that∫

Ω

(−∆u− u (a− θa))udx ≥ 0, ∀u ∈ C2
0

(
Ω
)
.

So (7) implies that
∫

Ω
u0u

2dx ≤ 0, which is a contradiction. �

3. Two-species subsystem

In this section, we assume that a22 = a33 = 1 in (3) and study the unique
positive solution of the following predator-prey subsystem (u1 ≡ 0):

(8)

 −∆u2 = u2 (r2 − u2 − a23u3) ,
−∆u3 = u3 (r3 + a32u2 − u3) in Ω,
u2 = u3 = 0 on ∂Ω,

Let

K =
a2

23 + a2
32 (1+a32)

2

(4+2a23a32) (1−a23 (1 + a32))
, L =

a2
23 + a2

32 (1+a32)
2

4 + 2a23a32
+ a23 (1+a32) .

It is easy to see that 0 < K < 1 if and only if 0 < L < 1. It is easy to show
that if (a23, a32) falls into the shadow region of Fig. 1, then 0 < K < 1.

Assume that 0 < K < 1, r3 > λ1. Define

r2 = inf {r2 ∈ [λ1, r3] ; θr2 ≥ L θr3} , r2 = sup {r2 ∈ [r3,∞] ; K θr2 ≤ θr3} ,

where θri (i = 2, 3) is the unique positive solution of the following boundary
value problem {

−∆ui = ui (ri − ui) in Ω,
ui = 0 on ∂Ω.
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Figure 1. In the shadow region of plane a23 − a32, 0 < K < 1 holds.

Lemma 3.1. Let (u2, u3) be a positive solution of (8). Then u2 < θr2 and

θr3 < u3. If 0 < K < 1, r2 ≤ r2 ≤ r3 ≤ r2, then u2 >
(

1− a23(1+a32)
L

)
θr2 ,

u3 < (1 + a32)θr3 .

Proof. If (u2, u3) is a nonnegative solution of (8) such that u2 is not identically
zero, then r2 > λ1 [3]. So

(9)

{
−∆u2 = u2 (r2 − u2) in Ω,
u2 = 0 on ∂Ω

has a unique positive solution θr2 . Clearly, u2 is a subsolution of (9), and
moreover large positive constant can be a supersolution of (9). Hence a sub-
super solution argument and the uniqueness of θr2 deduce that u2 ≤ θr2 . Since
r3 > λ1,

−∆u3 = u3 (r3 + a32u2 − u3) ≥ u3 (r3 − u3) in Ω,

a simple sub-super solution argument deduces that u3 ≥ θr3 .
It is easy to show from r2 ≤ r3 that

−∆u3 = u3 (r3 + a32u2 − u3) < u3 (r3 + a32θr2 − u3) ≤ u3 (r3 + a32θr3 − u3) ,

u3 is a subsolution of (6) with k = a32. Since any sufficiently large constant is a
supersolution of (6), together with Lemma 2.3, we have that u3 < (1 + a32) θr3 .

Since r2 ≤ r2 ≤ r3, we have that{
−∆u2 = u2 (r2 − u2 − a23u3) > u2

(
r2 − u2 − a23(1+a32)

L θr2

)
in Ω,

u2 = 0 on ∂Ω.
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Then u2 is a supersolution of (6) with k = a23(1+a32)
L . On the other hand,

there exists a sufficiently small constant ε > 0 such that εθr2 < u2 and ε <

1− a23(1+a32)
L . Then we have
−∆ (εθr2) = εθr2 (r2 − θr2) ≤ εθr2

(
r2 −

(
ε+

a23 (1 + a32)

L

)
θr2

)
= εθr2

(
r2 −

a23 (1 + a32)

L
θr2 − εθr2

)
in Ω,

εθr2 = 0 on ∂Ω,

hence εθr2 is a subsolution of (6) with k = a23(1+a32)
L . By Lemma 2.3, we have

that u2 >
(

1− a23(1+a32)
L

)
θr2 , we have to take ε → 0 and still we have the

strict inequality u2 >
(

1− a23(1+a32)
L

)
θr2 . �

Lemma 3.2. If 0 < K < 1, r2 ≤ r2 ≤ r3 ≤ r2, then there exists a unique
positive solution (u2, u3) of (8).

Proof. By Lemma 3.1 and a sub-super solution argument, we can show that (8)
has a positive solution. To prove the uniqueness, we assume that there exist two
different positive solutions (u21, u31) and (u22, u32) of (8). Let p = u21 − u22,
q = u31 − u32. Then (p, q) 6≡ (0, 0) satisfies −∆p = p (r2 − u21 − a23u31)− u22p− a23u22q,

−∆q = q (r3 + a32u21 − u31) + a32u32p− u32q in Ω,
p = q = 0 on ∂Ω.

Therefore, it follows that

(10)

∫
Ω

[−∆p− p (r2 − u21 − a23u31)] pdx+

∫
Ω

(u22p+ a23u22q) pdx = 0,

(11)

∫
Ω

[−∆q − q (r3 + a32u21 − u31)] qdx+

∫
Ω

(u32q − a32u32p) qdx = 0.

Since (u21, u31) is a positive solution of (8), zero is the least eigenvalue of
the following two eigenvalue problems{

−∆ψ1 − ψ1 (r2 − u21 − a23u31) = λψ1 in Ω,
ψ1 = 0 on ∂Ω,{
−∆ψ2 − ψ2 (r3 + a32u21 − u31) = λψ2 in Ω,
ψ2 = 0 on ∂Ω.

Arguing as in the proof of Lemma 2.3, we get that the first terms in both (10)
and (11) are nonnegative. Therefore,

(12)

∫
Ω

(
u22p

2 + (a23u22 − a32u32) pq + u32q
2
)
dx ≤ 0.
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Let B1 = (a23u22 − a32u32)
2 − 4u22u32. Since r2 ≤ r3,

B1 = a2
23u

2
22 + a2

32u
2
32 − (4 + 2a23a32)u22u32

< a2
23θ

2
r3 + a2

32 (1 + a32)
2
θ2
r3 − (4 + 2a23a32)

(
1− a23 (1 + a32)

L

)
θr2θr3

≤
[
a2

23 + a2
32 (1 + a32)

2 − (4 + 2a23a32) (L − a23 (1 + a32))
]
θ2
r3 = 0,

which implies that the form in (12) is positive definite. Therefore, (12) can
hold only when p ≡ q ≡ 0, a contradiction. �

4. Bifurcation of positive solutions related to the semi-trivial
solution (0, u2, u3)

In this section, we assume that a22 = a33 = 1 in (3). By regarding r1 as the
bifurcation parameter, we discuss the bifurcation of positive solutions of (3)
relative to the semi-trivial solution (0, u2, u3) .

Lemma 4.1. Let (u1, u2, u3) be a nonnegative solution of (3) such that u1,
u2, u3 ≥ 0. Then

u1 ≤
r1

a11
, u2 ≤ r2 +

a21r1

a11
, u3 ≤ r3 + a32

(
r2 +

a21r1

a11

)
.

Proof. If (u1, u2, u3) is a nonnegative solution of (3) such that u1 is not iden-
tically zero, then r1 > λ1. So

(13)

{
−∆u1 = u1 (r1 − a11u1) in Ω,
u1 = 0 on ∂Ω

has a unique positive solution u1r1 and u1r1 ≤ r1
a11

(see [3]). A simple sub-super
solution argument deduces that u1 ≤ u1r1 . Since

−∆u2 ≤ u2

(
r2 +

a21r1

a11
− u2

)
in Ω.

Then the maximum principle yields the required upper bound for u2. Similarly,

−∆u3 ≤ u2

(
r3 + a32

(
r2 +

a21r1

a11

)
− u3

)
in Ω.

Then the maximum principle yields the required upper bound for u3. �

We now establish an appropriate setting that will enable us to transform
problem (3) into a fixed point problem.

For r1 > 0, define a set Tr1 ⊂ H =
[
C+

0 (Ω)
]3

by

Tr1 = {(u1, u2, u3) ∈ H, u1 ≤
2r1

a11
, u2 ≤ 2

(
r2 +

a21r1

a11

)
,

u3 ≤ 2

(
r3 + a32

(
r2 +

a21r1

a11

))}
,
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where C+
0 (Ω) = {u ∈ C0(Ω) : u(x) ≥ 0 for x ∈ Ω} and C0(Ω) be the Banach

space of continuous functions on Ω whose values on ∂Ω are zero. By Lemma
4.1, all positive solutions of (3) lie in the interior of Tr1 . Moreover, one sees
that there exists a continuous and nondecreasing function of r1, denoted by
p (r1), such that for all (u1, u2, u3) ∈ Tr1 ,

(14)

 r1 − a11u1 − a12u2 + p (r1) > 0,
r2 + a21u1 − u2 − a23u3 + p (r1) > 0,
r3 + a32u2 − u3 + p (r1) > 0.

Then we define an operator A (r1, ·) on Tr1 by

A (r1, (u1, u2, u3))(15)

= (−∆ + p (r1))
−1

(u1 (r1 − a11u1 − a12u2 + p (r1)) ,

u2 (r2 + a21u1 − u2 − a23u3 + p (r1)) , u3 (r3 + a32u2 − u3 + p (r1))) .

Clearly, A (r1, ·) : Tr1 → H is completely continuous and Fréchet differen-
tiable, and any fixed points of A (r1, ·) are solutions of (3). In the following,
we will study equations

(16) A (r1, (u1, u2, u3)) = (u1, u2, u3)

instead of (3), i.e., we will study the fixed points of a one-parameter family of
completely continuous map. This family A : T→H, where T = ∪r1≥0 {r1} ×
Tr1 , T ⊂ R+ × H, is completely continuous. Therefore, the solution set S of
(16) defined by

S = {(r1, (u1, u2, u3)) ∈ T, A (r1, (u1, u2, u3)) = (u1, u2, u3)}
is locally compact.

Lemma 4.2. Assume that 0 < K < 1, r2 ≤ r2 ≤ r3 ≤ r2, 0 < a12(1− a23) <

L < 1. Let r1∗ be such that λ̃1

[
r1∗ − a12

(
1− a23(1+a32)

L

)
θr2

]
= 1. Then there

exists a unique r1 > 0 such that

(17) R
[
(−∆ + p (r1))

−1
(r1 − a12u2 + p (r1))

]
= 1,

r1 ∈ (r1∗, r2). Also, it holds that
R
[
(−∆ + p (r1))

−1
(r1 − a12u2 + p (r1))

]
< 1, if r1 < r1,

R
[
(−∆ + p (r1))

−1
(r1 − a12u2 + p (r1))

]
> 1, if r1 > r1.

Proof. It is easy to see from Lemma 2.1 that

R

[
(−∆ + p (r1))

−1

(
r1∗ − a12

(
1− a23 (1 + a32)

L

)
θr2 + p (r1)

)]
= 1.

If r1 ≤ r1∗, then

r1−a12u2 < r1−a12

(
1− a23 (1+a32)

L

)
θr2 ≤ r1∗−a12

(
1− a23 (1+a32)

L

)
θr2 .
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So,

R
[
(−∆ + p (r1))

−1
(r1 − a12u2 + p (r1))

]
< R

[
(−∆ + p (r1))

−1

(
r1∗ − a12

(
1− a23 (1 + a32)

L

)
θr2 + p (r1)

)]
= 1.

Since 0 < L < 1, it follows that a23 < 1, and u2 < (1 − a23)θr3 . Then for

r1 ≥ r2, r1 − a12u2 > r2 − a12(1− a23)θr3 > r2 − a12(1−a23)
L θr2 > r2 − θr2 . This

implies that

R
[
(−∆ + p (r1))

−1
(r1 − a12u2 + p (r1))

]
> 1.

Let R (r1) : R+ → R+ be defined by

R (r1) = R
[
(−∆ + p (r1))

−1
(r1 − a12u2 + p (r1))

]
.

Then Theorem 4.3.1 and §4.3.5 of [14] imply that R (r1) is a continuous func-
tion. Since R (r1∗) < 1 and R (r2) > 1, it follows that there exists a r1 ∈
(r1∗, r2) such that R (r1) = 1, i.e., (17) holds.

Assume there exists r̃1 with r̃1 6= r1 such that R (r̃1) = 1. Then there exist
ψ1 > 0 and ψ2 > 0 such that (4) holds for m = r1− a12u2 and m = r̃1− a12u2,
respectively. It follows that∫

Ω

−∆ψ1 · ψ2dx =

∫
Ω

(r1 − a12u2)ψ1ψ2dx

and ∫
Ω

−∆ψ2 · ψ1dx =

∫
Ω

(r̃1 − a12u2)ψ2ψ1dx.

Subtracting these two equalities, we get that

0 =

∫
Ω

(r1 − r̃1)ψ1ψ2dx 6= 0,

a contradiction.
Since r1 is the only value of r1 such that R (r1) = 1, R (r1) is a continuous

function and R (r1∗) < 1, R (r2) > 1, it follows that R (r1) < 1 if r1 < r1, and
that R (r1) > 1 if r1 > r1. �

Let Lr1 be the linearization of A (r1, ·) at the point (0, u2, u3) ∈ Tr1 . Then

Lr1 (l, w, h) = (−∆ + p (r1))
−1

((r1 − a12u2 + p (r1)) l,

a21u2l + (r2 − 2u2 − a23u3 + p (r1))w − a23u2h,

a32u3w + (r3 + a32u2 − 2u3 + p (r1))h) .

Next, we would like to compute the fixed point index of A (r1, ·) at the point
(0, u2, u3) relative to the cone H of Banach space E. To this end, we introduce
the preliminary theorem on the fixed point index.

For y ∈ H, define Wy = {x ∈ E : y+γx ∈ H for some γ > 0} and Sy = {x ∈
W y : −x ∈ W y}. Let y∗ be a fixed point of compact operator A : H → H and
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L = A
′
(y∗) be the Fréchet derivative of A at y∗. We say that A has property

α on W y∗ if there exist t ∈ (0, 1) and ω ∈W y∗\Sy∗ such that ω − tA′ω ∈ Sy∗ .
For an open subset U ⊂ H, define indexH(A,U) = index(A,U,H) = degH(I−
A,U, 0), where I is the identity map. Furthermore, the fixed point index of A at
y∗ in H is defined by indexH(A, y∗) = index(A, y∗, H) = index(A,U(y∗), H),
where U(y∗) is a small open neighborhood of y∗ in H. Then the following
theorem can be obtained from the results in [6, 15].

Theorem 4.3. Assume that I − L is invertible on W y∗ .

(i) If L has property α on W y∗ , then indexH(A, y∗) = 0.

(ii) If L does not have property α on W y∗ , then indexH(A, y∗) = (−1)σ,
where σ is the sum of algebraic multiplicities of the eigenvalues of L which are
greater than 1.

Lemma 4.4. indexH (A (r1, ·) , (0, u2, u3)) is equal to zero if r1 > r1 and equal
to ±1 if r1 < r1.

Proof. Let y = (0, u2, u3). Then one sees that Wy = C+
0

(
Ω
)
×C0

(
Ω
)
×C0

(
Ω
)

and Sy = {0} × C0

(
Ω
)
× C0

(
Ω
)
. First, we have to show that Lr1 has no

eigenvector in Wy corresponding to eigenvalue 1. Assume, on the contrary,
that there exists (l, w, h) ∈Wy such that

(18) Lr1 (l, w, h) = (l, w, h) .

If l 6≡ 0, then (18) implies that (−∆ + p (r1))
−1

(r1 − a12u2 + p (r1)) l = l, and
hence,

R
(

(−∆ + p (r1))
−1

(r1 − a12u2 + p (r1))
)

= 1.

This is a contradiction to the assumption that r1 6= r1. Therefore, it must hold
that l ≡ 0. If w 6≡ 0 and h 6≡ 0, then (18) implies that −∆w − (r2 − 2u2 − a23u3)w + a23u2h = 0,

−∆h− a32u3w − (r3 + a32u2 − 2u3)h = 0 in Ω,
w = h = 0 on ∂Ω.

Multiplying the first equation by w, the second by h, and then integrating over
Ω, we get that∫

Ω

[
−∆w · w − (r2 − u2 − a23u3)w2

]
dx+

∫
Ω

[
u2w

2 + a23u2hw
]
dx = 0,∫

Ω

[
−∆h · h− (r3 + a32u2 − u3)h2

]
dx+

∫
Ω

[
u3h

2 − a32u3hw
]
dx = 0.

Arguing as in the proof of Lemma 3.2, we get that∫
Ω

[
u2w

2 + u3h
2 + (a23u2 − a32u3)wh

]
dx ≤ 0.

The form above is equal to the form in (12), which is positive definite. Hence
w ≡ h ≡ 0.
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Let M = C0

(
Ω
)
× {0} × {0}. Then M is a closed complement of Sy in E.

Let T be the projection onto M , and let Mr1 denote the restriction of Lr1 to
M . Then

Π ◦Mr1 = (−∆ + p (r1))
−1

(r1 − a12u2 + p (r1)) .

Now, Theorem 4.3 and Lemma 2 of [6] imply that indexH (A (r1, ·) , (0, u2, u3))
= index (Lr1 , 0, Sy) = ±1 if r1 < r1, and indexH (A (r1, ·) , (0, u2, u3)) = 0 if
r1 > r1. �

Let Σ0 = {(r1, (0, u2, u3)), r1 ≥ 0}. Then Σ0 ⊂ S, it is a continuum (a closed
connected set) in S, and therefore it is in R+×H.

Theorem 4.5. r1 is a bifurcation point for (16) with respect to Σ0, and it is
the only one.

Proof. Assume that r1 is not a bifurcation point for Σ0. Then there exists an
interval [ρ1, ρ2] such that r1 ∈ [ρ1, ρ2] and an open set U ⊂ [ρ1, ρ2] × H ∩ T,
such that U ∩ S = [ρ1, ρ2] × {(0, u2, u3)} and ∂U ∩ S = ∅. Let Ur1 =
{(u1, u2, u3) , (r1, (u1, u2, u3)) ∈ U}. Then, by the homotopy invariance prop-
erty of the fixed point [1], indexH (A (ρ1, ·) , Uρ1) = indexH (A (ρ2, ·) , Uρ2). On
the other hand, by the excision property and definition of local index,

indexH (A (ρ1, ·) , Uρ1) = indexH (A (ρ1, ·) , (0, u2, u3)) = ±1,

indexH (A (ρ2, ·) , Uρ2) = indexH (A (ρ2, ·) , (0, u2, u3)) = 0,

this is because ρ1 < r1 and ρ2 > r1, a contradiction.
Assume that there exists another bifurcation point r̂1 with r̂1 6= r1. Then

there exists a sequence {(r1n, (u1n, u2n, u3n))} in S\Σ0 such that r1n → r̂1,
u1n → 0, u2n → u2, u3n → u3. So, there exists N such that u2n > 0, u3n > 0
for all n ≥ N .

Assume that u1n = 0 for some n ≥ N . Then (u2n, u3n) is a positive solution
of (8), and therefore, u2n = u2, u3n = u3. Hence, (r1n, (u1n, u2n, u3n)) ∈ Σ0,
contrary to the assumption. So, u1n > 0 for all n ≥ N . Then it holds that

(19)
u1n

‖u1n‖
= (−∆)

−1

(
u1n

‖u1n‖
(r1n − a11u1n − a12u2n)

)
, n ≥ N.

Since (−∆)
−1

is a compact operator and the sequence in the parentheses is
bounded, the sequence on the right hand side converges for some subsequence,
which we relabel as the original one. Therefore, the left hand side of (19) also
converges to some u1 of norm 1. Passing to the limit in (19), we get that

u1 = (−∆)
−1

(u1 (r̂1 − a12u2)) .

Therefore,

u1 = (−∆ + p (r1))
−1

(r̂1 − a12u2 + p (r1))u1.

By Lemma 4.2, it follows that r̂1 = r1, contrary to the assumption. �

Let Σ = (S\Σ0) ∪ (r1, (0, u2, u3)). Σ is a closed subset of S by Theorem 4.5.
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Theorem 4.6. Assume that a22 = a33 = 1 and the conditions of Lemma 4.2
hold. Then an unbounded global bifurcation Σ ⊂ Σ of positive solutions of (3)
occurs at (r1, (0, u2, u3)).

Proof. Let Σ be the component of Σ containing (r1, (0, u2, u3)) . Assume that
Σ is bounded. Then there exists µ > r1 such that Σ ⊂ [0, µ] × H ∩ T and
Σ∩{µ}×Tµ = ∅. Let X =S∩ [0, µ]×H, X is obviously a compact topological

space. Let Y =Σ ∪ Σ0 ∩X, Z =S ∩ ({µ} ×H ∪ {0} ×H) \Y. Then Y and Z
are nonempty, disjoint, closed subsets of X. By Whyburn’s Lemma (see [24])
there exist two compact sets V and W, such that Y ⊂ V, Z ⊂W, V∩W =∅,
V∪W = X. This implies that there exists an open set U in [0, µ]×H, such that
Y ⊂ V ⊂ U, U ∩W =∅ and ∂U∩S = ∅. Therefore, indexH (A (r1, ·) ,Ur1)
is well defined for all r1 ∈ [0, µ] and it is constant (with respect to r) by
the homotopy invariance principle (see Theorem 11.3 [1]). On the other hand,
indexH (A (µ, ·) ,Uµ) = indexH (A (µ, ·) , (0, u2, u3)) = 0, since µ > r1. There-
fore, indexH (A (0, ·) ,U0) = 0. Since indexH (A (0, ·) , (0, u2, u3)) = ±1, it fol-
lows that Σ∩ {0} ×H 6= ∅. Let (0, (u1, u2, u3)) ∈ Σ∩ {0} ×H. If u1 6≡ 0, then
(14) implies that {

−∆u1 = −u1 (a11u1 + a12u2) in Ω,
u1 = 0 on ∂Ω

which contradicts the maximum principle. Hence u1 ≡ 0. Therefore, (u2, u3) is
a solution of (8), different from (u2, u3) . So at least one of the components must
be zero. It cannot be u3, since Σ is a continuum and positive u3 components
are bounded away from zero (see Lemma 3.1). So u2 ≡ 0 and u3 = θr3 . Since
Σ∩{0}×H = {(0, (0, 0, θr3))}, Σ must contain the whole unbounded continuum
{(r, (0, 0, θr3)), r ≥ 0} , contrary to the assumption. �

5. Concluding remarks

In this work, we have investigated a reaction-diffusion system describing
three-species food chain model with zero Dirichlet boundary conditions. We
assumed conditions under which the predator-prey subsystem (u1 ≡ 0) has
a unique positive solution (u2, u3) . We obtained a connected set of positive
solution of (3) bifurcating from the branch {(r1, (0, u2, u3)) : r1 > 0} . That is,
if the predator-prey subsystem has a unique co-existence state, then prey, mid-
level predator and top predator can co-exist provided the prey birth rate is
sufficiently high. If we regard r2 or r3 as bifurcation parameter, it is difficult to
study the bifurcation solutions of (3) which are relative to (0, u2, u3). Since we
cannot establish the corresponding spectral radius results such as Lemma 4.2
when regarding r2 or r3 as bifurcation parameter. Therefore it is impossible to
study the corresponding fixed point index and bifurcation point.
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