• Title/Summary/Keyword: Reaction enthalpy

Search Result 157, Processing Time 0.02 seconds

Linear Relationships between Thermodynamic Parameters (Part III) Application to Solvolysis Reaction (熱力學函數間의 直線關係 (第3報) Solvolysis反應에의 應用)

  • Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.264-270
    • /
    • 1963
  • The general equation for the substituent effect test, which was derived in the previous paper, has been extended to correlate thermodynamic parameters of solvolysis reaction by modifying the potential energy term to represent the effect of changes in solvent composition. The linear fits of the new equation, $\Delta{\Delta}H^\neq=a'Y+b\Delta{\Delta}S^\neq$, were tested with 35 examples from literature and average correlation coefficient of 0.977 was obtained. Examination of results showed that the equation is generally applicable to solvolysis reaction and helps elucidate some the difficulties experienced with the Grunwald-Winsteln equation. It has been stressed that the linear enthalpy-entropy effect exists only between the external enthalpy and entropy of activation, and therefore strictly it is the linear external enthalpy-entropy effect.

  • PDF

Dehydrogenation of Ethylalcohol Catalyzed by Alcoholdehydrogenase Under High Pressure

  • Jee Jong-Gi;Shin Jin-Young;Hwang Jung-Ui
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.50-57
    • /
    • 1989
  • A pressure effect of the dehydrogenation of ethylalcohol catalyzed by alcoholdehydrogenase was observed in Tris-HCl buffer, pH 8.8 from $25^{\circ}C$ to $35^{\circ}C$ under high pressure system by using our new theory. The theory makes it possible for us to obtain all rate and equilibrium constants for each step of all enzymatic reaction with a single intermediate. We had enthalpy and volume profiles of the dehydrogenation to suggest a detail and reasonable mechanism of the reaction. In these profiles, both enthalpy and entropy of the reaction are positive and their values decrease with enhancing pressure. It means that the first step is endothermic reaction, and its strength decrease with elevating pressure. At the same time, all activation entropies have large negative values, which prove that not only a ternary complex has a more ordered structure at transition state, but also water molecules make a iceberg close by the activated complex. In addition to this fact, the first and second step equilibrium states are controlled by enthalpy. The first step kinetic state is controlled by enthalpy but the second step kinetic state is controlled by entropy.

DFT/B3LYP Study of the Substituent Effects on the Reaction Enthalpies of the Antioxidant Mechanisms of Magnolol Derivatives in the Gas-Phase and Water

  • Najafi, Meysam;Najafi, Mohammad;Najafi, Houshang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3607-3617
    • /
    • 2012
  • In this paper, the study of various ortho- and meta-substituted Magnolol derivatives is presented. The reaction enthalpies related to three antioxidant action mechanisms HAT, SET-PT and SPLET for substituted Magnolols have been calculated using DFT/B3LYP method in gas-phase and water. Calculated results show that electron-withdrawing substituents increase the bond dissociation enthalpy (BDE), ionization potential (IP) and oxidation/reduction enthalpy (O/RE), while electron-donating ones cause a rise in the proton dissociation enthalpy (PDE) and proton affinity (PA). In ortho- position, substituents show larger effect on reaction enthalpies than in meta-position. In comparison to gas-phase, water attenuates the substituent effect on all reaction enthalpies. In gas-phase, BDEs are lower than PAs and IPs, i.e. HAT represents the thermodynamically preferred pathway. On the other hand, SPLET mechanism represents the thermodynamically favored process in water. Results show that calculated enthalpies can be successfully correlated with Hammett constants (${\sigma}_m$) of the substituted Magnolols. Furthermore, calculated IP and PA values for substituted Magnolols show linear dependence on the energy of the highest occupied molecular orbital ($E_{HOMO}$).

Thermodynamics of the binding of Substance P to lipid membranes

  • Lee, Woong Hyoung;Kim, Chul
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • The thermodynamic functions for the binding of the peptide Substance P (SP) on the surface of lipid vesicles made of various types of lipids were obtained by using isothermal titration calorimetry. The reaction enthalpies measured from the experiments were -0.11 to $-4.5kcal\;mol^{-1}$. The sizes of the lipid vesicles were measured with dynamic light scattering instrument in order to get the correlation between the reaction enthalpies and the vesicle sizes. The bindings of SP on the lipid vesicles with diameter of 37 to 108 nm were classified into the enthalpy-driven reaction or the entropy-driven reaction according to the size of the lipid vesicles. For the enthalpy-driven binding reaction, the significance of the electrostatic interactions between SP and lipid molecules was affirmed from the experimental results of the DMPC/DMPG/DMPH and DMPC/DMPS/DMPH vesicles as well as the importance of the hydrophobic interactions between hydrophobic groups of SP and lipid molecules.

Development of Combustor for Combustible Hazardous Gas (가연성 유해가스 처리를 위한 연소기 개발)

  • 전영남;채종성;김미환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.479-485
    • /
    • 1996
  • Volatile organic compounds are air pollutants exhausting from industrial process, evaporation of solvent, and so on. Most of VOCs are the combustible gas of low calorific value as it is diluted by air. The systems burning such a hazardous gas need to increase enthalpy in order to increase flame stability. In this study an incinerator with reciprocating flow in the honeycomb ceramic has been used for the experiment of VOCs control. By the reciprocating flow system, the enthalpy of combustion gas is effectively regenerated into the enthalpy increases of the combustible gas through the honeycomb ceramic, which provides a heat storage. The position of the reaction zone is strongly dependent on the parameters of mixture velocity and time frequency. Flame front is changed to the point where burning velocity is coincided with burning velocity in the honeycomb ceramic. In this system it is important that flame front should be located symmetrically at the center of honeycomb ceramic for the purpose of increasing the reaction rate at one point. Peak temperature becomes higher with decreasing time frequency, at which the flow direction is regularly reversed.

  • PDF

Synthesis and Exchange Properties of Sulfonated Poly(phenylene sulfide) with Alkali Metal Ions in Organic Solvents

  • Son, Won Geun;Kim, Sang Heon;Park, Su Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Sulfonated poly(phenylene sulfide) (SPPS) polymers were prepared by sulfonation of poly[methyl[4-(phenylthio) phenyl]sulfonium trifluoromethanesulfonate] (PPST) with fumic sulfonic acid (10% $SO_3-H_2SO_4$) and demethylation with aqueous NaOH solution. The equilibrium constants of ion exchange reactions between alkali metal cations ($Li^+,\;Na^+,\;and\;K^+$) and SPPS ion exchanger in organic solvents such as tetrahydrofuran (THF) and dioxane were measured. The equilibrium constants of ion exchange reactions increased as the polarity of the solvent increased, and the reaction temperature decreased. The equilibrium constants of the ion exchange reaction ($K_{eq}$) also increased in the order of $Li^+,\;Na^+,\;and\;K^+$. To elucidate the spontaneity of the exchange reaction in organic solvents, the enthalpy, entropy, and Gibbs free energy were calculated. The enthalpy of reaction ranged from -0.88 to -1.33 kcal/mol, entropy ranged from 1.42 to 4.41 cal/Kmol, and Gibbs free energy ranged from -1.03 to -2.55 kcal/mol. Therefore, the exchange reactions were spontaneous because the Gibbs free energies were negative. The SPPS ion exchanger and alkali metal ion bounding each other produced good ion exchange capability in organic solvents.

Thermodynamic Analysis on the Hydrolysis Reaction of Vinylsulfonyl Reactive Dyes (VS계 반응염료 가수분해반응의 열역학적 해석)

  • Gwon, Hyeok-Seong;Jeon, Yeong-Sil;Nam, Seong-U;Kim, In-Hoe
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.74-76
    • /
    • 2008
  • The hydrolyses of ten VS dyes were examined at 40$^{\circ}C$, 50$^{\circ}C$, and 60$^{\circ}C$ and the kinetic parameters were estimated. The values of free energy, enthalpy and entropy of hydrolysis and reaction with cellulose for VS dyes were calculated. The linear relationship exist between the enthalpy and entropy. The structure and entropy of VS dyes gave a effect on the dimerization for VS reactive dyes. The VS dyes have small value of entropy were formed dimer. It was confirmed that no dimer form for m-substituted VS dyes. There were similarities among various reactions including homo- and mixed dimerization.

  • PDF

Temperature Dependence of Energy Gap and Thermodynamic Function Properties of Undoped and Co-doped $Cd_{4}GeSe_{6}$ Sing1e Crystals by Chemical Transport Reaction Method (화학수송법으로 성장한 $Cd_4GeSe_{6}$$Cd_{4}GeSe_{6}$ : $CO^{2+}$ 단결정에서 에너지 띠 간격의 온도의존성 및 열역학함수 추정)

  • Kim, Nam-Oh;Kim, Hyung-Gon;Kim, Duck-Tae;Hyun, Seung-Cheol;Oh, Gum-Kon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.2
    • /
    • pp.85-90
    • /
    • 2003
  • In this work $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}$ : $Co^{2+}$ single crystals were grown by the chemical transport reaction method and the structure of $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}$ : $Co^{2+}$ single crystals were monoclinic structure. The temperature dependence of optical energy 9ap was fitted well to Varshni equation. Also, the entropy, enthalpy and heat capacity were deduced from the temperature dependence of optical energy gap.

An Asymptotic Analysis of Excess Enthalpy Flame (초과엔탈피 화염의 점근 해석)

  • Lee, Dae Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.135-137
    • /
    • 2014
  • Excess enthalpy flame propagating an porous inert medium, which recirculate exhaust heat to the upstream cold mixture, is theoretically analyzed. Using the activation-energy asymptotics, the flame structure is divided into the thin reaction and the gas-phase preheat zone, as is traditionally done. Ahead and behind of the two, there exist an outer preheat zone, where heat is convectively transferred from solid to gas, and a downstream re-equilibrium zone, where thermal equilibrium between phases is established. Asymptotic solutions of species and energy equations in each zone are obtained and then matched to each other, and finally the mass burning rate is obtained as a function of the flame propagation velocity with respect to the solid phase and physical properties of gas and solid.

  • PDF

다공성 물질에 의한 열재순환 화염에 관한 실험적 연구 I

  • 유영돈;민대기;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1113-1120
    • /
    • 1988
  • This paper presents the results of an experimental investigation on one dimensional excess enthalpy flame formed in a porous block. The investigation is undertaken in order to further the physical understanding of internal heat recirculation from reaction zone to unburned mixture. Two porous blocks are placed at both sides of combustion block to control the temperature distribution in the combustion block by means of radiation heat transfer. Mean temperature measurement reveals the general nature of the reaction zone in the porous material. It is conformed that the temperature of reaction zone exceeds the adiabatic flame temperature and the flame is stabilized at the out range of flammibility limit derived by conventional burner.