Browse > Article
http://dx.doi.org/10.5806/AST.2017.30.2.89

Thermodynamics of the binding of Substance P to lipid membranes  

Lee, Woong Hyoung (Department of Chemistry, Hannam University)
Kim, Chul (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.30, no.2, 2017 , pp. 89-95 More about this Journal
Abstract
The thermodynamic functions for the binding of the peptide Substance P (SP) on the surface of lipid vesicles made of various types of lipids were obtained by using isothermal titration calorimetry. The reaction enthalpies measured from the experiments were -0.11 to $-4.5kcal\;mol^{-1}$. The sizes of the lipid vesicles were measured with dynamic light scattering instrument in order to get the correlation between the reaction enthalpies and the vesicle sizes. The bindings of SP on the lipid vesicles with diameter of 37 to 108 nm were classified into the enthalpy-driven reaction or the entropy-driven reaction according to the size of the lipid vesicles. For the enthalpy-driven binding reaction, the significance of the electrostatic interactions between SP and lipid molecules was affirmed from the experimental results of the DMPC/DMPG/DMPH and DMPC/DMPS/DMPH vesicles as well as the importance of the hydrophobic interactions between hydrophobic groups of SP and lipid molecules.
Keywords
thermodynamics; partitioning; Substance P; lipid vesicle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Seelig and P. Ganz, Biochemistry, 30(38), 9354-9 (1991).   DOI
2 A. Seelig and P. M. Macdonald, Biochemistry, 28(6), 2490-6 (1989).   DOI
3 T. L. Whitehead, L. M. Jones, and R. P. Hicks, Journal of Biomolecular Structure and Dynamics, 21(4), 567-576 (2004).   DOI
4 P. Ram and J. H. Prestegard, BBA - Biomembranes, 940(2), 289-294 (1988).   DOI
5 T. L. Whitehead, L. M. Jones, and R. P. Hicks, Biopolymers, 58(7), 593-605 (2001).   DOI
6 T. C. Wong and X. Gao, Biopolymers, 45(5), 395-403 (1998).   DOI
7 D. A. Keire and T. G. Fletcher, Biophysical J., 70(4), 1716-1727 (1996).   DOI
8 S. Auge, B. Bersch, M. Tropis, and A. Milon, Biopolymers, 54(5), 297-306 (2000).   DOI
9 T. Wieprecht, M. Beyermann, and J. Seelig, Biophys Chem, 96(2-3), 191-201 (2002).   DOI
10 C. Kim, S. B. Baek, D. H. Kim, S. C. Lim, H. J. Lee, and H. C. Lee, J. Peptide Sci., 15(5), 353-358 (2009).   DOI
11 B. Barz, T. C. Wong, and I. Kosztin, Biochim Biophys Acta, 1778(4), 945-53 (2008).   DOI
12 S. Harrison and P. Geppetti, Int. J. Biochem Cell. Biol., 33(6), 555-76 (2001).   DOI
13 T. Hokfelt, B. Pernow, and J. Wahren, J Intern Med, 249(1), 27-40 (2001).   DOI
14 H. Duplaa, O. Convert, A. M. Sautereau, J. F. Tocanne, and G. Chassaing, Biochimica et Biophysica Acta - Biomembranes, 1107(1), 12-22 (1992).   DOI
15 A. Seelig, T. Alt, S. Lotz, and G. Holzemann, Biochemistry, 35(14), 4365-74 (1996).   DOI
16 G. Beschiaschvili and J. Seelig, Biochemistry, 31(41), 10044-10053 (1992).   DOI
17 I. Jelesarov and H. R. Bosshard, J. Mol. Recognit, 12(1), 3-18 (1999).   DOI
18 N. Voievoda, T. Schulthess, B. Bechinger, and J. Seelig, J Phys Chem B, 119(30), 9678-87 (2015).   DOI
19 M. N. Triba, D. E. Warschawski, and P. F. Devaux, Biophys J, 88(3), 1887-901 (2005).   DOI
20 J. Seelig, Biochim Biophys Acta, 1666(1-2), 40-50 (2004).   DOI
21 T. Broemstrup and N. Reuter, Biophysical J., 99, 825- 833 (2010).   DOI
22 T. Wymore and T. C. Wong, Biophysical J., 76, 1213-1227 (1999).   DOI
23 M. Meier and J. Seelig, J. Mol. Biol., 369(1), 277-89 (2007).   DOI