• Title/Summary/Keyword: Reaction conditions optimization

Search Result 237, Processing Time 0.027 seconds

Study on NADH which is the Air Volume Sensor in the Activated Sludge Reaction Tank (활성슬러지 반응탱크의 풍량제어지표인 NADH에 관한 연구)

  • Chung, Woo-jin;Hong, Sung-min;Kim, Han-lae;Chang, Soon-woong
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.439-446
    • /
    • 2016
  • Domestic sewerage treatment plant is operated by activated sludge method and its modified method by using microorganism. In most cases, a method of using microorganism is directly controlled by the operator based on individual judgment through factors of DO, pH and ORP. In addition, under aerobic condition in bioreactor, energy consumption including excessive air injection is learned to be somewhat plenty. In order to solve this problem, in most of the process, improvement of internal recycling and activated environmental factor of microorganism were researched extensively. However, as factors are changed depending on various conditions, it is not sufficient as an indicator of judgment. As such, a research on operation of bioreactor that measures metabolic change in short time by directly measuring activated condition of microorganism using NADH fluorometer is required in reality.It is considered that the method like this could supplement problem of energy consumption being occurred in the existing treatment method and operational optimization of bioreactor would be enabled by controlling optimal air volume. Therefore, in this study, in order to obtain optimal operational indicator of bioreactor, proper air volume control test was performed and through batch test and site evaluation, possibility of NADH sensor being utilized as operational control indicator of bioreactor is intended to be analyzed. In order to compare with measured value, DO, ORP that are operational control indicator of existing bioreactor were used. As MLSS concentration was increased through batch test, NADH value was increased and site evaluation also showed similar tendency to batch test. Resultantly, it could be confirmed that changing level of NADH fluorometer was a sensor that could measure bioreactor condition effectively and optimized scale of bioreactor is considered to be utilized.

Exploration of the Glycosyltransferase BmmGT1 from a Marine-Derived Bacillus Strain as a Potential Enzyme Tool for Compound Glycol-Diversification

  • Liu, Quanquan;Ren, Pengfei;Liu, Yang;Qin, Wen;Li, Huayue;Li, Wenli
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.931-937
    • /
    • 2018
  • Glycosyltransferases (GTs) from microbes are an emerging and rich source for efficient glycol-transformation of natural/unnatural compounds. Here, we probed the catalytic capability and substrate promiscuity of BmmGT1 from marine-derived Bacillus methylotrophicus B-9987. The regioselectivity of BmmGT1 on macrolactin A (1) was explored by optimization of the reaction conditions, in which a series of O-glycosylated macrolactins (1a-1e) were generated, including two new di/tri-O-glucosyl analogs (1b and 1e). Furthermore, BmmGT1 was able to catalyze the glycosylation of the thiol (S-) or amine (N-) sites of phenolic compounds (2 and 3), leading to the generation of N- (2a) or S-glycosides (3a and 3b). The present study demonstrates that BmmGT1 could serve as a potential enzyme tool for O-, N-, or S-glycosyl structural diversification of compounds for drug discovery.

Operating Strategy Optimization of Metal Hydride based Hydrogen Supply System (수소저장합금을 이용하는 수소공급시스템의 운전 방법 최적화)

  • Kim, Byung-Jun;Sung, Hae-Jung;Lee, Young-Duk;Lee, Sang-Min;Cho, Ju-Hyeong;Ahn, Kook-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.625-633
    • /
    • 2011
  • Characteristics of a commercial metal hydride (MH) hydrogen supply system have been investigated and an operating strategy was developed based on the experimental data. As a prior step, charging/discharging capacity, thermal properties such as heat capacity, heat of reaction of MH system were experimentally measured. And then P-C-T data for various operating conditions were collected and a correlation between P, C and T predicting the behavior of MH was derived. Based on the basic experimental data, an operating strategy of MH system was developed, in which the hot water temperature supplied into the water jacket of MH was controlled depending on the pressure of MH, thereby the pressure of MH could be maintained at a suitable range. By adjusting the temperature of hot water from $40^{\circ}C$ to $60^{\circ}C$, the maximum discharging capacity of hydrogen could be increased by 4.7%, and consequently more stable hydrogen supply and longer operation time of fuel cell system could be achieved.

Effect of CH4 addition to the H2 Plasma Excited by HF ICP for H2 Production (고주파유도결합에 의해 여기된 물플라즈마로부터 수소생산에서 메탄가스 첨가효과)

  • Kim, Dae-Woon;Jung, Yong-Ho;Choo, Won-Il;Jang, Soo-Ouk;Lee, Bong-Ju;Kim, Young-Ho;Lee, Seung-Heun;Kwon, Sung-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.448-454
    • /
    • 2009
  • Hydrogen was produced from water plasma excited in high frequency (HF) inductively coupled tubular reactor. Mass spectrometry was used to monitor gas phase species at various process conditions, Water dissociation rate depend on the process parameters such as ICP power, $H_{2}O$ flow-rate and process pressure, Water dissociation percent in ICP reactor decrease with increase of chamber pressure, while increase with increase of ICP power and $H_{2}O$ flow rate. The effect of $CH_4$ gas addition to a water plasma on the hydrogen production has been studied in a HF ICP tubular reactor. The main roles of $CH_4$ additive gas in $H_{2}O$ plasma are to react with 0 radical for forming $CO_x$ and CHO and resulting additional $H_2$ production. Furthermore, $CH_4$ additives in $H_{2}O$ plasma is to suppress reverse-reaction by scavenging 0 radical. But, process optimization is needed because $CH_4$ addition has some negative effects such as cost increase and $CO_x$ emission.

Optimization of Conditions for the Production of Algin-like Polysaccharide by Polyglucuronic Acid C5-Epimerase (Polyglucuronic Acid C5-Epimerase에 의한 Algin 유사 다당류 생산 조건의 최적화)

  • Cho, Gye-Bong;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.147-153
    • /
    • 2000
  • We could produce algin-like biomaterial of polyiduronan using polyglucuronic acid C5-epimerase with polyglucuronic acid prepared by specific oxidation of primary alcohol groups of four kinds of polysaccharides(corn starch, rice starch, sweet potato starch, and cellulose). The enzyme activity was determined by the modified Dische carbazole methodology with the isolated crude enzyme from the supernatant centrifuged at $100,000{\times}g$ for 1 hr after grinding fresh bovine liver. And then, the optimal substrate, pH, and temperature for the enzyme reaction of polyglucuronic acid C5-epimerase were determined as the oxidized sweet potato starch, 7.0, and $30^{\circ}C$, respectively. Conclusively, it could be possible to epimerize polyglucuronic acid in the oxidized sweet potato starch to polyiduronic acid. Therefore, we could obtain algin-like polysaccharide using the oxidized sweet potato starch and polyglucuronic acid C5-epimerase isolated from bovine liver.

  • PDF

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Evaluation of Hybrid Thermal Oxidation(HTO) System for Removal of MEK(Methyl ethyl ketone) and Toluene (복합열산화(Hybrid Thermal Oxidation) 시스템을 이용한 MEK(Methyl ethyl ketone)와 Toluene 제거 평가)

  • Jang, Duhun;Bae, Wookeun;Kim, Moonil;Kim, Kyungtae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, optimization of MEK and Toluene removal was conducted by HTO(Hybrid Thermal Oxidation) system. HTO system has a multi-bed reaction plate and the plate consisted of wasted heat regeneration part and catalysis part. VOCs removal by HTO system was estimated by changing inlet flow rates with different valve changing times. Under $350^{\circ}C$ of combustion temperature, VOCs was fully converted and the equivalent conversion was 100%. The thermal oxidation efficiency, related to the amount of injected fuel into HTO system and the valve change time, was revealed at the level of 93.0~96.3%. In case of MEK removal by HTO system, the efficiency was ranged from 91.1 to 97.1%. Also, Toluene removal efficiency(93.2~97.4%) was good and stable with respect to the operating conditions. Considering above results, it was proved that HTO system could be a stable and compact system for VOCs, especially MEK and Toluene with high removal efficiency.

Effects of Li-Sources on Microstructure of Metallurgically Pre-Lithiated SiOx for Li-Ion Battery's Anode (야금학적으로 Pre-Lithiation된 리튬이온전지 음극용 SiOx의 리튬소스가 미세구조에 미치는 영향)

  • Lee, Jae Young;Lee, Bora;Kim, Nak-Won;Jang, Boyun;Kim, Junsoo;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • The effect of various lithium sources such as LiCl, LiOH, and Li-metal on the microstructure and electrochemical properties of granulated $SiO_x$ powders were investigated. Various lithium sources were metallurgically added for a passive pre-lithiation of $SiO_x$ to improve its low initial coulombic efficiency. In spite of using the same amount of Li in various sources, as well as the same process conditions, different lithium silicates were obtained. Moreover, irreversible phases were formed without reduction of $SiO_x$, which might be from additional oxygen incorporation during the process. Accordingly, there were no noticeable electrochemical enhancements. Nevertheless, the $Li_4SiO_4$ phase changes the initial electrochemical reaction, and consequently the relationship between the microstructure and electrochemical properties of metallurgically pre-lithiated $SiO_x$ could provide a guideline for the optimization of the performance of lithium ion batteries.

Characterization of the Starch Degradation Activity of recombinant glucoamylase from Extremophile Deinococcus geothermalis (극한성 미생물Deinococcus geothermalis 유래 재조합 글루코아밀레이즈의 전분 분해 활성 특징)

  • Jang, Seung-Won;Kwon, Deok-Ho;Park, Jae-Bum;Jung, Jong-Hyun;Ha, Suk-Jin
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.15-19
    • /
    • 2019
  • This work focused on characterization of the starch degradation activity from extremophile strain Deinococcus geothermalis. Glucoamylase gene from D. geothermalis was cloned and overexpressed by pET-21a vector using E. coli BL21 (DE3). In order to characterize starch degrading activity of recombinant glucoamylase, enzyme was purified using HisPur Ni-NTA column. The recombinant glucoamylase from D. geothermalis exhibited the optimum temperature as $45^{\circ}C$ for starch degradation activity. And highly acido-stable starch degrading activity was shown at pH 2. For further optimization of starch degrading activity with metal ion, various metal ions ($AgCl_2$, $HgCl_2$, $MnSO_4{\cdot}4H_2O$, $CoCl_2{\cdot}6H_2O$, $MgSO_4$, $ZnSO_4{\cdot}7H_2O$, $K_2SO_4$, $FeCl_2{\cdot}4H_2O$, NaCl, or $CuSO_4$) were added for enzyme reaction. As results, it was found that $FeCl_2{\cdot}4H_2O$ or $MnSO_4{\cdot}4H_2O$ addition resulted in 17% and 9% improved starch degrading activity, respectively. The recombinant glucoamylase from D. geothermalis might be used for simultaneous saccharification and fermentation (SSF) process at high acidic conditions.

Process Optimization of Peptides Production from Protein of Sea Cucumber and Its Antioxidant Capacity Analysis (해삼 단백질로부터 펩타이드 제조 최적공정 확립 및 항산화 특성)

  • Ha, Yoo Jin;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.338-348
    • /
    • 2017
  • Protein hydrolysates derived from plants and animals having antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity has been known as playing important role like hormone. This study was performed to optimize the hydrolysis of protein of sea of cucumber by a flavourzyme. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 0.5 to 1.5%(w/v). As a result, the optimization of process was determined at temperature of $48-50^{\circ}C$, pH of 7.0-7.2, and enzyme concentration of 1.0-1.1%(w/v), and degree of hydrolysis was 43-45 at above conditions. The molecular weight of hydrolysate was distributed to 500-3,500 Da and showed typical peptides. Inhibition concentration ($IC_{50}$) of peptides of DPPH radical scavenging activity, Superoxide anion radical scavenging activity, Hydroxy radical scavenging activity, $Fe^{2+}$ cheating activity was 1.25, 3.40, 10.3, and 22.11 mg/mL, respectively. Therefore, we expect that those products are useful as functional food ingredients.