• Title/Summary/Keyword: Reaction characteristics.

Search Result 4,625, Processing Time 0.034 seconds

Characteristics of Thermal Hazard in Methylthioisocyanate Synthesis Reaction Process (Methylthioisocyanate 합성반응 공정의 열적위험 특성)

  • Han, In-Soo;Lee, Keun-Won;Lee, Joo-Yeob
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.77-87
    • /
    • 2012
  • Compared to a batch reactor, where all reactants are initially charged to the reactor, the semi-batch reactor presents serious advantages. The feed of at least one of the reactants provides an additional way of controlling the reaction course, which represents a safety factor and increases the constancy of the product quality. The aim of this study was to investigate the characteristics of thermal hazard such as a feed time, catalysis concentration and solvent concentration in methylthioisocyanate(MTI) synthesis reaction process. The experiments were carried out by the Multimax reactor system and Accelerating rate calorimeter(ARC). The MTI synthesis reaction process has many reaction factors and complicated reaction mechanism of multiphase reaction. Through this study, we can use as a tool for assessment of thermal hazard of other reaction processes by applying experiment method provided.

A Numerical Study on NOx Emission of the Swirl Premixed burner for Several Chemical Reaction Mechanisms (스월 예혼합 버너의 화학반응식에 따른 NOx 특성에 대한 수치적 연구)

  • Cho, Cheonhyeon;Baek, Gwangmin;Sohn, Chae Hoon;Cho, Ju Hyung;Kim, Han Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.133-135
    • /
    • 2012
  • This study presents the prediction of NOx and mixing characteristics with several chemical reaction mechanisms of methane in EV burner of double cone. Experimental results are compared with numerical results for validation. Mixing characteristics are analyzed at monitoring points based on the modified unmixedness. The mixing characteristics were improved in a certain case, the lance injection case. In 1-step reaction case, inside of the cone, flame was formed and lots of NOx was generated because the fuel injected from the lance was overestimated. In 2-step reaction case, numerical results showed a good agreement with experimental results in a qualitative manner.

  • PDF

A Study on the Performance Improvement of an Air Spring System (에어스프링 시스템의 성능 개선에 관한 연구)

  • Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • This study describes a method which can attenuate reaction force effectively for an air spring system composed of an air spring and auxiliary chamber. For the analysis, the nonlinear governing equation of the air spring system is derived. For a performance improvement of the system, change of the heat transfer effect and the mass flow rates is included in the analysis of the air spring system. The simulation study is presented to show the reaction force is changed by variations in heat transfer characteristics and the air spring system of isothermal process has the best performance. As a result, to improve attenuation characteristics of reaction force, a process in the air spring system should be maintained near isothermal process.

Enzymatic Hydrolysis of Hydrophobic Triolein by Lipase in a Mone-phase Reaction System Containing Cyclodextrin; Reaction Characteristics

  • Lee, Yong-Hyun;Kim, Tae-Kwon;Shin, Hyun-Dong;Park, Dong-Chan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.103-108
    • /
    • 1998
  • A hydrophobic substrate triolein was hydrolyzed by lipase in a mono-phase reaction system containing cyclodextrin(CD) as emulsifier. The triolein was transformation to an emulsion-like state in the CD containing reaction system in contrast to the oil-droplet like state without CD due to the formation of an inclusion complex between the lipids and CDs. The hydyrolysis reaction increased substantially in the CD containing reaction system, and the optimum reaction conditions including the amount of lipase, ${\beta}$-CD concentration, and mixing ratio of triolein and ${\beta}$-CD, were determined. The performance of the enzyme reaction in a mono-phase reaction system was compared with that of a two-phase reaction system which used water immiscible hexane as the organic solvent. The role of a CD in the mono-phase reaction system was elucidated by comparing the degree of the inclusion complex formation with triolein and oleic acid, Km and Vmax values, and product inhibition by oleic aicd in aqueous and CD containing reaction systems. The resulting enhanced reaction seems to be caused by two phenomena; the increased accessibility of lipase to triolein and reduced product inhibition by oleic acid through the formation of an inclusion complex.

  • PDF

Reaction Characteristics and Kinetics of Ni-bsed Oxygen Carrier for Chemical Looping Combustion (매체순환연소를 위한 Ni계열 산소전달입자의 반응 특성 및 반응 모델)

  • PARK, JI HYE;HWANG, RA HYUN;BAEK, JEOM-IN;RYU, HO-JUNG;YI, KWANG BOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.90-96
    • /
    • 2018
  • Reaction characteristics and kinetics of a oxygen carrier (OCN717-R1SU) for chemical looping combustion (CLC) have been investigated using TGA by changing gas concentration (10-30 vol.% $CH_4$) and reaction temperature ($825-900^{\circ}C$). Reaction rate of OCN717-R1SU increased as temperature increased and it was found that reaction is delayed at the initial reaction regime. Johnson-Mehl-Avrami (JMA) model was adopted to explain the reaction phenomenon. The activation energy (E) determined by JMA model in reduction reaction of OCN717-R1SU is $151.7{\pm}2.03kJ/mol$ and pre-exponential factor and JMA exponent were also obtained. The parameters calculated in this study will be applied in design of the reactor and operation conditions for CLC process.

Numerical Investigation on the Thermal Characteristics of Mild Combustion According to Co-axial Air (동축공기에 따른 Mild 연소의 열적 특성에 대한 수치연구)

  • Hwang, Chang-Hwan;Baek, Seung-Wook;Kim, Hak-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • Mild combustion is considered as a promising combustion technology for energy saving and low emission of combustion product gases. In this paper, the controllability of reaction region in mild combustion is examined by using co-axial air nozzle. For this purpose, numerical approach is carried out. Propane is considered for fuel and air is considered for oxidizer and the temperature of air is assumed 900K slightly higher than auto ignition temperature of propane. But unlike main air, the atmospheric condition of co-axial air is considered. Various cases are conducted to verify the characteristics of Co-Axial air burner configuration. The use of coaxial air can affect reaction region. These modification help the mixing between fuel and oxidizer. Then, reaction region is reduced compare to normal burner configuration. The enhancement of main air momentum also affects on temperature uniformity and reaction region. The eddy dissipation concept turbulence/chemistry interaction model is used with two step of global chemical reaction model.

A Study on the Modeling of Pt-Catalyzed Reaction and the Characteristics of Mass Transfer in a Micro-Scale Combustor (마이크로 스케일 연소기의 백금 촉매 반응 모델링과 물질 전달 특성에 대한 연구)

  • Lee, Gwang-Goo;Suzuki, Yuji
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.870-877
    • /
    • 2008
  • Numerical analysis is applied to model Pt-catalyzed reaction in a micro-scale combustor fueled by butane. The reaction constants of catalytic oxidation are determined from plug flow model with the experimental data. Orders of magnitude between the chemical reaction rate and the mass transfer rate are carefully compared to reveal which mechanism plays a dominant role in the total fuel conversion rate. For various conditions of fuel flow rate and surface temperature, the profiles of Sherwood number are investigated to study the characteristics of the mass transport phenomena in the micro-tube combustor.

Characteristics of Formaldehyde and N2O Formation from the Catalytic Reaction of Methane (메탄의 촉매반응에 의한 포름알데히드 및 N2O의 생성특성)

  • Choi, B.C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 1995
  • Experiments have been conducted to investigate the characteristics of formaldehyde and nitrous oxide formation from the catalytic reaction of methane. Catalysts used in the experiment were Pd. Pd/Pt/Rh loaded on ${\gamma}-Al_2O_3$ and ${\gamma}-Al_2O_3-La_2O_3$ monolith. In the catalytic reaction of methane. as the concentration of NO, $O_2$ and $CH_4$ increased, the formaldehyde emission was increased. The concentration of $N_2O$ increased as NO and CO increased. It was also found that the formaldehyde emission was produced by the gas reaction of methane in high temperature above 950K.

  • PDF

Production of Tantalum Powder and Characteristics by External Supply of Feed Material and Reductant (원료물질과 환원제의 외부공급에 따른 탄탈륨 분말의 제조 및 특성)

  • 윤재식;박형호;배인성;김병일
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.349-352
    • /
    • 2003
  • This study examined the correlation of various operational factors including reaction temperature and the quantity of reductant and diluent with the characteristics of powder using $K_2$ TaF$_{7}$ as feed materials, Na as a reductant and KCl/KF as a diluent. Also to control the particle size and shape, external supply system developed, it can provide a feed material and a reductant at a fixed quantity and evaluated the characteristics of tantalum powder. When the external supply system was applied instead of the batch type process that charges feed material, reductant and diluent at the same time, it was possible to induce regular reduction reaction between feed material and reductant, which increased the recovery rate and reduced the mixture of impurities. In particular, the application of the external supply system enabled the control of reaction temperature and reaction speed according to the feeding rate of feed material during reduced reaction, and resultantly it enabled the manufacturing of granular-shaped powder with a regular granularity of 2∼3 ${\mu}{\textrm}{m}$ and purity of 99.5%.

A Study on the Thrust Characteristic Analysis of Linear Induction Motor according to Secondary Reaction Plate Using the Container Scanner Vehicle (컨테이너 검색기 이송대차 추진용 선형 유도전동기의 2차측 리액션플레이트 재질에 따른 특성 연구)

  • Jeong, Jae-Hoon;Choi, Jang-Young;Sung, So-Young;Park, Jong-Won;Lim, Jaewon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • This paper presents the analysis of the analysis of thrust characteristics of linear induction motors(LIMs) according to secondary reaction plate. LIMs are well known as high speed transport systems, which can obtain thrust directly without gears and links, or auxiliary mechanisms. A simple structure, easy maintenance, and less environmental pollution are advantages of LIMs. In transport systems using LIMs, the secondary reaction plate is an important design factor, because it has considerable impact on the cost of the railway as well as the performance of the LIMs. This paper deals analyzed the characteristics of linear induction motor used for moving the vehicle of container scanner. Thrust, efficiency and load characteristic were interpreted with FEM regarding two models whose material of secondary reaction plate was copper and aluminum. It suggested the interpretation of thrust, efficiency and power factor characteristic along slip and compared the operation ability of linear induction motor through characteristics analysis along the load.