Browse > Article
http://dx.doi.org/10.7316/KHNES.2018.29.1.90

Reaction Characteristics and Kinetics of Ni-bsed Oxygen Carrier for Chemical Looping Combustion  

PARK, JI HYE (Graduate School of Energy Science and Technology, Chungnam National University)
HWANG, RA HYUN (Graduate School of Energy Science and Technology, Chungnam National University)
BAEK, JEOM-IN (Korea Electric Power Corporation (KEPCO) Research Institute)
RYU, HO-JUNG (Korea Institute of Energy Research)
YI, KWANG BOK (Department of Chemical Engineering Education, Chungnam National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.29, no.1, 2018 , pp. 90-96 More about this Journal
Abstract
Reaction characteristics and kinetics of a oxygen carrier (OCN717-R1SU) for chemical looping combustion (CLC) have been investigated using TGA by changing gas concentration (10-30 vol.% $CH_4$) and reaction temperature ($825-900^{\circ}C$). Reaction rate of OCN717-R1SU increased as temperature increased and it was found that reaction is delayed at the initial reaction regime. Johnson-Mehl-Avrami (JMA) model was adopted to explain the reaction phenomenon. The activation energy (E) determined by JMA model in reduction reaction of OCN717-R1SU is $151.7{\pm}2.03kJ/mol$ and pre-exponential factor and JMA exponent were also obtained. The parameters calculated in this study will be applied in design of the reactor and operation conditions for CLC process.
Keywords
CLC; Oxygen carrier particle; Kinetics; Reduction reactivity; JMA model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. J. Ryu, K. S. Kim, Y. S. Park, and M. H. Park, "Reduction Characteristics of Oxygen Carrier Particles for Chemicallooping Combustor with Different Fuels", Trans. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 1, 2009, pp. 45-54.
2 J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, "Advances in $CO_2$ capture technology-the US Department of Energy's Carbon Sequestration Program" Int. J. Greenhouse Gas Control, Vol. 2, No. 1, 2008, pp. 9-20.   DOI
3 H. J. Ryu, "$CO_2-NO_x$ free chemical-looping combustion technology." KOSEN report, http://www.kosen21.org, 2003.
4 H. Kim, J. H. Park, J. I. Baek, and H. J. Ryu, "Selection of Oxygen Carrier Candidates for Chemical Looping Combustion by Measurement of Oxygen Transfer Capacity and Attrition Loss", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 4, 2016, pp. 404-411.   DOI
5 L. Protasova and F. Snijkers, "Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes", Fuel, Vol. 181, No. 1, 2016, pp. 75-93.   DOI
6 J. H. Jeong, J. W. Park, and W. L. Yoon, "Redox Characteristics of $CoO_x/CoAl_2O_4$ as a Oxygen Carrier for Chemical-looping Combustion", J. Korean Ind. Eng. Chem., Vol. 14, No. 4, 2003, pp. 411-417.
7 H. J. Ryu, K. S. Kim, Y. S. Park, and M. H. Park, "Natural Gas Combustion Characteristics of Mass Produced Oxygen Carrier Particles for Chemical-Looping Combustor in a Batch Type Fluidized Bed Reactor", Trans. of the Korean Hydrogen and New Energy Society, Vol. 20, No. 2, 2009, pp. 151-160.
8 H. J. Ryu, J. W. Kim, W. K. Jo, and M. H. Park, "Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor", Korean Chem. Eng. Res., Vol. 45, No. 5, 2007, pp. 506-514.
9 J. A. Medrano, H. P. Hamers, G. Williams, M. van Sint Annaland, and F. Gallucci, "$NiO/CaAl_2O_4$ as active oxygen carrier for low temperature chemical looping applications", Appl. Energy, Vol. 158, 2015, pp. 86-96.   DOI
10 C. Dueso, M. Ortiz, A. Abad, F. Garcia-Labiano, F. Luis, P. Gayan, and J. Adanez, "Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming", Chem. Eng. J., Vol. 188, 2012, pp. 142-154.   DOI
11 H. J. Ryu, D. H. Lee, M. S. Jang, J. H. Kim, and J. I. Baek, "Conceptual Design and Feasibility Study on 0.5 MWth Pressurized Chemical Looping Combustor 0.5 MWth", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 2, 2016, pp. 201-210.   DOI
12 J. I. Baek, S. R. Yang, T. H. Eom, J. B. Lee, and C. K. Ryu, "Effect of MgO addition on the physical properties and reactivity of the spray-dried oxygen carriers prepared with a high content of NiO and $Al_2O_3$", Fuel, Vol. 144, 2015, pp. 317-326.   DOI
13 J. I. Baek, C. K. Ryu, J. H. Lee, T. H. Eom, J. B. Lee, H. J. Ryu, J. H. Ryu, and J. Yi, "The effects of using structurally less-stable raw materials for the support of a spray-dried oxygen carrier with high NiO content", Fuel, Vol. 102, 2012, pp. 106-114.   DOI
14 E. R. Monazam, R. Siriwardane, R. W. Breault, H. Tian, L. J. Shadle, G. Richards, and S. Carpenter, "Kinetics of the reduction of CuO/bentonite by methane($CH_4$) during chemical looping combustion", Energy & Fuels, Vol. 26, No. 5, 2012, pp. 2779-2785.   DOI
15 Q. Zafar, A. Abad, T. Mattisson, and B. Gevert, "Reaction kinetics of freeze-granulated $NiO/MgAl_2O_4$ oxygen carrier particles for chemical-looping combustion", Energy & Fuels, Vol. 21, No. 2, 2007, pp. 610-618.   DOI
16 P. Erri and A. Varma, "Diffusional effects in nickel oxide reduction kinetics" Ind. Eng. Chem. Res., Vol. 48, No. 1, 2008, pp. 4-6.   DOI
17 B. Jankovic, B. Adnadevic, and S. Mentus, "The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method", Thermochimica acta, Vol. 456, No. 1, 2007, pp. 48-55.   DOI
18 A. Tilland, L. Franck-Lacaze, and E. Schaer, "Kinetic determination of chemical looping combustion reactions in a continuous stirred tank reactor: Reduction of the oxygen carrier" Chem. Eng. Sci., Vol. 162, 2017, pp. 341-354.   DOI
19 A. Abad, J. Adanez, A. Cuadrat, F. Garcia-Labiano, P. Gayan, and F. Luis, "Kinetics of redox reactions of ilmenite for chemical-looping combustion", Chem. Eng. Sci., Vol. 66, No. 4, 2011, pp. 689-702.   DOI
20 Z. Sarshar and S. Kaliaguine, "Reduction kinetics of perovskite- based oxygen carriers for chemical looping combustion", Ind. Eng. Chem. Res., Vol. 52, No. 21, 2013, pp. 6946-6955.   DOI
21 E. R. Monazam, R. W. Breault, and R. Siriwardane, "Kinetics of hematite to wustite by hydrogen for chemical looping combustion" Energy & Fuels, Vol. 28, No. 8, 2014, pp. 5406-5414.   DOI
22 E. R. Monazam, R. W. Breault, H. Tian, and R. Siriwardane, "Reaction kinetics of mixed CuO-$Fe_2O_3$ with methane as oxygen carriers for chemical looping combustion", Ind. Eng. Chem. Res., Vol. 54, No. 48, 2015, pp. 11966-11974.   DOI
23 J. Malek, "The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses", Thermochimica Acta, Vol. 267, 1995, pp. 61-73.   DOI
24 J. Bessieres, A. Bessieres, and J. J. Heizmann, "Iron oxide reduction kinetics by hydrogen", Int. J. Hydrog. Energy, Vol. 5, No. 6, 1980, pp. 585-595.   DOI
25 M. Luo, S. Wang, L. Wang, and M. Lv, "Reduction kinetics of iron-based oxygen carriers using methane for chemical- looping combustion" J. Power Sources, Vol. 270, 2014, pp. 434-440.   DOI