Browse > Article
http://dx.doi.org/10.3795/KSME-B.2008.32.11.870

A Study on the Modeling of Pt-Catalyzed Reaction and the Characteristics of Mass Transfer in a Micro-Scale Combustor  

Lee, Gwang-Goo (경일대학교 기계자동차학부)
Suzuki, Yuji (동경대학 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.32, no.11, 2008 , pp. 870-877 More about this Journal
Abstract
Numerical analysis is applied to model Pt-catalyzed reaction in a micro-scale combustor fueled by butane. The reaction constants of catalytic oxidation are determined from plug flow model with the experimental data. Orders of magnitude between the chemical reaction rate and the mass transfer rate are carefully compared to reveal which mechanism plays a dominant role in the total fuel conversion rate. For various conditions of fuel flow rate and surface temperature, the profiles of Sherwood number are investigated to study the characteristics of the mass transport phenomena in the micro-tube combustor.
Keywords
Micro Combustor; Catalytic Reaction; Numerical Analysis; Mass Transfer; Sherwood Number;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Tanaka, S., Chang, K., Min, K., Satoh, D., Yoshida, K. and Esashi, M., 2004, “MEMS-Based Components of a Miniature Fuel Cell/Fuel Reformer System,” Chemical Engineering Journal, Vol. 101, pp. 143~149   DOI   ScienceOn
2 Boyarko, G. A., Sung, C. J. and Schneider, S. J., 2005, “Catalyzed Combustion of Hydrogen–Oxygen in Platinum Tubes for Micro-Propulsion Applications,” Proceedings of the Combustion Institute, Vol. 30, pp. 2481~2488   DOI   ScienceOn
3 Li, Z. W., Chou, S. K., Shu, C., Yang, W. M. and Xue, H., 2004, “Predicting the Temperature of a Premixed Flame in a Microcombustor,” Journal of Applied Physics, Vol. 96, pp. 3524~3530   DOI   ScienceOn
4 Raja, L. L., Kee, R. J., Deutschmann, O., Warnatz, J. and Schmidt, L. D., 2000, “A Critical Evaluation of Navier-Stokes, Boundary-Layer, and Plug-Flow Models of the Flow and Chemistry in a Catalytic-Combustion Monolith,” Catalysis Today, Vol. 59 pp. 47~60   DOI   ScienceOn
5 Prasad, R., Kennedy, L. A. and Ruckenstein, E., 1984, “Catalytic Combustion,” Catalysis Reviews-Science and Engineering, Vol. 26, pp. 1~58   DOI
6 Miesse, C., Masel, R. I., Short, M. and Shannon, M. A., 2005, “Diffusion Flame Instabilities in a 0.75 mm Non-Premixed Microburner,” Proceedings of the Combustion Institute, Vol. 30, pp 2499~2507   DOI   ScienceOn
7 Schaevitz, S., Franz, A. J., Jensen, K. F. and Schmidt, M. A., 2001, “A Combustion-Based MEMS Thermoelectric Power Generator,” Proceedings of the 11th International Conference on Solid-State Sensor and Actuators, Munich, Germany, pp. 30~33
8 Yang, W. M., Chou, S. K., Shu, C., Li, Z. W. and Xue, H., 2002, “Development of Microthermo-photovoltaic System,” Applied Physics Letters, Vol. 81, pp. 5255~5257   DOI   ScienceOn
9 Vican, J., Gajdeczko, B. F., Dryer, F. L., Milius, D. L., Aksay, I. A. and Yetter, R. A., 2002, “Development of a Microreactor as a Thermal Source for Microelectromechanical Systems Power Generation,” Proceedings of the Combustion Institute, Vol. 29, pp. 909~916   DOI   ScienceOn
10 Okamasa, T., LEE, G. G., Suzuki, Y., Kasagi, N. and Matsuda, S., 2006, “Micro Catalytic Combustor Using High-Precision Ceramic Tape Casting,” Journal of Micromechanics and Microengineering, Vol. 16, No. 9, pp. S198~S205   DOI   ScienceOn
11 Norton, D. G. and Vlachos, D. G., 2003, “Combustion Characteristics and Flame Stability at the Microscale: a CFD Study of Premixed Methane/Air Mixtures,” Chemical Engineering Science, Vol. 58, pp. 4871~4882   DOI   ScienceOn
12 Chen, M. and Buckmaster, J., 2004, “Modeling of Combustion and Heat Transfer in 'Swiss Roll' Micro Scale Combustors,” Combustion Theory and Modelling, Vol. 8, pp. 701~720   DOI   ScienceOn
13 Deutschmann, O. and Schmidt, L. D., 1998, “Modeling of Partial Oxidation of Methane in a Short-Contact-Time Reactor,” AIChE Journal, Vol. 44, pp. 2465~2477   DOI   ScienceOn
14 Hayes, R. E. and Kolaczkowski, S. T., 1999, “A Study of Nusselt and Sherwood Numbers in a Monolith Reactor,” Catalysis Today, Vol. 47, pp. 295~303   DOI   ScienceOn
15 Seyed-Reihani, S. A. and Jackson, G. S., 2004, “Effectiveness in Catalytic Washcoats with Multi-Step Mechanisms for Catalytic Combustion of Hydrogen,” Chemical Engineering Science, Vol. 59, pp. 5937~5948   DOI   ScienceOn
16 Spadaccini, C. M., Zhang, X., Cadou, C. P., Miki, N. and Waitz, I. A., 2003, “Preliminary Development of a Hydrocarbon-fueled Catalytic Micro-Combustor,” Sensors and Actuators A, Vol. 103, pp. 219~224   DOI   ScienceOn
17 Hays, R. E., Lui, B. and Votsmeier, M., 2005, “Calculating Effectiveness Factors in Non-Uniform Washcoat Shapes,” Chemical Engineering Science, Vol. 60, pp. 2037~2050   DOI   ScienceOn
18 Fernandez-Pello, A. C., Pisano, A. P., Fu, K., Walther, D., Knobloch, A., Martinez, F., Senesky, M., Jones, D., Stoldt, C. and Heppner, J., 2002, “MEMS Rotary Engine Power System,” Proceedings of International Workshop on Power MEMS 2002, Tsukuba, Japan, pp. 28~31
19 Deutschmann, O., Maier, L. I., Reidel, U., Stroemman, A. H. and Dibble, R. W., 2000, “Hydrogen Assisted Catalytic Combustion of Methane on Platinum,” Catalysis Today, Vol. 59, pp. 141~150   DOI   ScienceOn
20 Hays, R. E., Lui, B., Moxom, R. and Votsmeier, M., 2004, “The Effect of Washcoat Geometry on Mass Transfer in Monolith Reactors,” Chemical Engineering Science, Vol. 59, pp. 3169~3181   DOI   ScienceOn
21 Male, P., Croon, M. H. J. M., Triggelaar, R. M., Berg, A. and Schouten, J. C., 2004, “Heat and Mass Transfer in a Square Microchannel with Asymmetric Heating,” International Journal of Heat & Mass Transfer, Vol. 47, pp. 87~99   DOI   ScienceOn
22 Suzuki, Y., Saito, J. and Kasagi, N., 2004, “Development of Micro Catalytic Combustor with Pt/Al2O3 Thin Films,” JSME International Journal B, Vol. 47, pp. 522~527   DOI   ScienceOn
23 Wang, X., Zhu, J., Bau, H. and Gorte, R. J., 2001, “Fabrication of Micro-Reactors Using Tape-Casting Methods,” Catalysis Letters, Vol. 77, pp. 173~177   DOI   ScienceOn