• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,824, Processing Time 0.027 seconds

Nitrogen-doped Nickel Oxide Catalysts for Oxygen-Evolution Reactions (알칼라인 조건에서의 산소발생반응을 위한 N-doped NiO 촉매)

  • Lee, Jin Goo;Jeon, Ok Sung;Shul, Yong Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.701-705
    • /
    • 2019
  • Oxygen-evolution reaction (OER) in alkaline media has been considered as a key process for various energy applications. Many types of catalysts have been developed to reduce high overpotential in OER, such as metal alloys, metal oxides, perovskite, or spinel. Nickel oxide (NiO) has high potential to increase OER activity according to volcano plots. The exact mechanisms for OER has not been discovered, but defects such as cation or anion vacancy typically act as an active site for diverse electrochemical reactions. In this study, nitrogen was doped into NiO by using ethylenediamine for formation of Ni vacancy, and the effects of N doping on OER activity and stability was studied.

Interaction of Oxygen and Chlorine Dioxide in Pulp Bleaching (I) -Studies on the Degradation of Lignin Model Compounds- (펄프 표백시 산소와 이산화염소의 상호작용 (제1보) - 리그닌 모델화합물 연구 -)

  • 윤병호;황병호;김세종;최경화
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.74-78
    • /
    • 2003
  • The structural property of phenolic and non-phenolic lignin has an effect on the reaction rate of lignin by oxygen and chlorine dioxide respectively. Moreover, the undesirable degradation of cellulose followed by lignin degradation is influenced by chemical charge and reaction time. In this paper, several lignin model compounds were used to illuminate the interaction of oxygen and chlorine dioxide by varying the position of O and D(OD, DO, ODO and DOD), and gas chromatography method was used to investigate the degradation of lignin by determining the content of methoxyl groups in lignin. It was shown that structural properties of lignin models were more influential on the degradation and demethylation of lignin than the above combination. Combination of oxygen and chlorine dioxide, however, was more effective in degradation of lignin than only one stage, and three stages than two stages.

The Oxidation of Hydrazobenzene Catalyzed by Cobalt Complexes in Nonaqueous Solvents

  • Kim, Stephen S.B.;Hommer, Roger B.;Cannon, Roderick D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.255-265
    • /
    • 2006
  • The oxidation of hydrazobenzene by molecular oxygen in the polar solvent methanol is catalysed by a Schiff's base complex Co(3MeOsalen) which is a synthetic oxygen carrier. The products are trans-azobenzene and water. The rate of the reaction has been studied spectrophotometrically and the rate law established. A mechanism involving a ternary complex of catalyst, hydrazobenzene and molecular oxygen has been proposed. The kinetic studies show that a ternary complex $CoL{\cdot}H_2AB{\cdot}O_2$ is involved in the rate determining step. The reactions are summarised in a catalytic cycle. The kinetic data suggest that a ternary complex involving Co(3MeOsalen), triphenyl-phosphine and molecular oxygen is catalytically acive species but at higher triphenylphosphine concentrations the catalyst becomes inactive. The destruction of the catalytic activity could be due to the catalyst becoming coordinated with triphenyl phosphine at both z axis sites of the complex e.g. Co (3MeOsalen)$(PPh_3)_2$.

A STUDY ON DEGREASING DETERGENT AND METHOD FOR THE IPP TEST FACILITY

  • Kim Yong-Wook;Lee Jung-Ho;Kang Sun-Il;Kim Sang-Heon;Oh Seung-Hyub
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.262-265
    • /
    • 2004
  • As a cryogen, LOx is a light blue, odorless, transparent liquid. Also it is not shock sensitive and does not decompose. However, it is a strong oxidizer and will vigorously support combustion. Therefore all harmful contaminants (such as grease, oil, fingerprint and organic materials) that could cause malfunctions, fires, or explosions in a oxygen environments must be completely removed prior to the introduction of oxygen. Especially, grease ingredient located inside of the LOx supply line, pipe and PHS (Pneumo-Hydraulic System) part can make drastic chemical reaction with oxygen. Therefore, to protect rapid reaction such as explosion, grease ingredient must be surely eliminated by a regular and irregular degreasing. Study on the availability, effectiveness and selection of degreasing detergents and method is described in this paper, and it will be useful for the construction and management of IPP test facility.

  • PDF

Oxidation of Dibenzyl Sulfide via an Oxygen Transfer from Palladium Nitrate

  • WhangPark, Young-ae;Na, Yong-Ho;Baek, Du-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2023-2027
    • /
    • 2006
  • Dibenzyl sulfide was oxidized at the a-carbon to yield benzaldehyde in the presence of $Pd(NO_3)_2$. Oxygen itself could not oxidize the sulfide directly, instead the nitrato ligand of the palladium complex transferred oxygen to dibenzyl sulfide to form benzaldehyde. The X-ray crystal structure of the intermediate complex, cis-[$Pd(NO_3)_2${$S(CH_2C_6H_5)_2$}$_2$], revealed that the nitrato ligand was unidentate. Para-substituted dibenzyl sulfides I, $(YC_6H_4CH_2)_2S $wherein Y = $OCH_3$, $CH_3$, Cl, CN, or $NO_2$, were synthesized and reacted with palladium nitrate, and those with electron-donating substituents (Y = $OCH_3$ and $CH_3$) were good substrates for the oxidation reaction with palladium nitrate. Thus, the reaction mechanism of the oxygen transfer was proposed to include nucleophilic benzylic carbon.

Efficient Ring Opening Reaction of Epoxides with Oxygen Nucleophiles Catalyzed by Quaternary Onium Salt

  • Kim, Jin Won;Cho, Dae Won;Park, Gyoosoon;Kim, Sung Hong;Ra, Choon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2286-2290
    • /
    • 2013
  • Ring opening reactions of epoxides with oxygen nucleophiles catalyzed by a variety of quaternary onium salt, such as ammonium or phosphonium salt were explored. The results showed that tetrabutylphosphonium bromide (TBPB) among salts serves as the most efficient catalyst for this process and that expoxide ring opening reactions with a variety of oxygen nucleophiles including carboxyic acid and phenol, promoted using this salt, lead to generate readily purifiable products in excellent yields.

Hydrophilic surface formation of polumer treated by ion assisted reaction and its applications (이온빔보조 반응법을 이용한 고분자 표면의 친수성처리와 그 응용)

  • Cho, J.;Choi, S. C.;Yun, K.H.;Koh, S. K.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.262-268
    • /
    • 1999
  • Polycarbonate (PC) and Polymethylmethacrylate (PMMA) surface was modified by ion assisted reaction (IAR) technique to obtain the hydrophilic functional groups and improve the wettability. In conditions of ion assisted reaction, ion beam energy was changed from 500 to 1500eV, and ion dose and oxygen gas blown rate were fixed $1\times10^{16}$ ions/$\textrm{cm}^2$ and 4ml/min, respectively. Wetting angle of water on PC and PMMA surface modified by $Ar^+$ ion without blowing oxygen at 4ml/mon showed $5^{\circ}$ and $10^{\circ}$. Changes of wetting angle with oxygen gas and $Ar^+$ ion irradiation were explained by considering formation of hydrophilic group due to a reaction between irradiated polymer chain by energetic ion irradiation and blown oxygen gas. X-ray photoelectron spectroscopy analysis shows that hydrophilic groups such as -C-O, -(C=O)- and -(C=O)-O- are formed on the surface of polymer by chemical interaction. The polymer surface modification using ion assisted reaction only changed the surface physical properties and sept the bulk properties. In comparison with other modification methods, the surface modification by IAR treatment was chemically stable and enhanced the adhesion between metal and polymer surface. The applications of various kinds of polymer surface modification methods, metal and polymer surface. The applications of various kinds of polymer surface modification could be appled to the new materials about hydrophilic surface properties by IAR treatment. The adhesion between metal film and polymer measured by Scotch tape test whether the hydrophilic surfaces could improve the adhesion strength or not.

  • PDF

Solid-liquid phase equilibria on the GdBa2Cu3O7-δ stability phase diagram in low oxygen pressures (1 - 100 mTorr)

  • Lee, J.W.;Lee, J.H.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.28-31
    • /
    • 2012
  • We report the solid-liquid phase equilibria on the $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) stability phase diagram in low oxygen pressures ($PO_2$) ranging from 1 to 100 mTorr. On the basis of the GdBCO stability phase diagram experimentally determined in low oxygen pressures, the isothermal sections of three different phase fields on log $PO_2$ vs. 1/T diagram were schematically constructed within the $Gd_2O_3-Ba_2CuO_y-Cu_2O$ ternary system, and the solid-liquid phase equilibria in each phase field were described. The invariant points on the phase boundaries include the following three reactions; a pseudobinary peritectic reaction of $GdBCO{\leftrightarrow}Gd_2O_3$ + liquid ($L_1$), a ternary peritectic reaction of $GdBCO{\leftrightarrow}Gd_2O_3+GdBa_6Cu_3O_y$ + liquid ($L_2$), and a monotectic reaction of $L_1{\leftrightarrow}GdBa_6Cu_3O_y+L_2$. A conspicuous feature of the solid-liquid phase equilibria in low $PO_2$ regime (1 - 100 mTorr) is that the GdBCO phase is decomposed into $Gd_2O_3+L_1$ or $Gd_2O_3+GdBa_6Cu_3O_y+L_2$ rather than $Gd_2BaCuO_5+L$ well-known in high $PO_2$ like air.

Adsorption Configuration of Serine on Ge(100): Competition between the Hydroxymethyl and Carboxyl groups of Serine During the Adsorption Reaction

  • Kim, Ye-Won;Yang, Se-Na;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.182-182
    • /
    • 2011
  • We investigated the adsorption structures of serine on a Ge(100) surface by core-level photoemission spectroscopy (CLPES) in conjunction with density functional theory (DFT) calculations. The adsorption energies calculated using DFT methods suggested that four of six adsorption structures were plausible. These structures were the "O-H dissociated-N dative bonded structure", the "O-H dissociation bonded structure", the "Om-H dissociated-N dative bonded structure", and the "Om-H dissociation bonded structure" (where Om indicates the hydroxymethyl oxygen). These structures are equally likely, according to the adsorption energies alone. The core-level C 1s, N 1s, and O 1s CLPES spectra confirmed that the carboxyl oxygen competed more strongly with the hydroxymethyl oxygen during the adsorption reaction, thereby favoring formation of the "O-H dissociated-N dative bonded" and "O-H dissociation bonded" structures at 0.30 ML and 0.60 ML, respectively. The experimental results were corroborated theoretically by calculating the reaction pathways leading to the two adsorption geometries. The reaction pathways indicated that the "O-H dissociated-N dative bonded structure" is the major product of serine adsorption on Ge(100) due to comparably stable adsorption energy.

  • PDF

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.