Solid-liquid phase equilibria on the GdBa₂Cu₃O₇₋₈ stability phase diagram in low oxygen pressures (1 - 100 mTorr) J. W. Lee¹, J. H. Lee², S. H. Moon², and S. I. Yoo^{1*} Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Korea Science and Materials Corporation (SyNAM Co.) Ltd. Agreena Cympai, do 456, 812 K. ²Superconductor, Nano & Advanced Materials Corporation (SuNAM Co.) Ltd, Anseong, Gyunggi-do 456-812, Korea Received 15 November 2012; accepted 20 November 2012 Abstract— We report the solid-liquid phase equilibria on the GdBa₂Cu₃O₇₋₈ (GdBCO) stability phase diagram in low oxygen pressures (PO₂) ranging from 1 to 100 mTorr. On the basis of the GdBCO stability phase diagram experimentally determined in low oxygen pressures, the isothermal sections of three different phase fields on $\log PO_2$ vs. 1/T diagram were schematically constructed within the Gd₂O₃-Ba₂CuO_v-Cu₂O ternary system, and the solid-liquid phase equilibria in each phase field were described. The invariant points on the phase boundaries include the following three reactions; a pseudobinary peritectic reaction of GdBCO \leftrightarrow Gd₂O₃ + liquid (L₁), a ternary peritectic reaction of GdBCO \leftrightarrow Gd₂O₃ + GdBa₆Cu₃O_v + liquid (L₂), and a monotectic reaction of L₁ ↔ GdBa₆Cu₃O_v +L₂. A conspicuous feature of the solid-liquid phase equilibria in low PO2 regime (1 - 100 mTorr) is that the GdBCO phase is decomposed into Gd₂O₃ + L₁ or Gd₂O₃ + GdBa₆Cu₃O_v + L₂ rather than Gd₂BaCuO₅ + L well-known in high PO2 like air. *Keywords*: GdBCO, solid-liquid phase equilibria, peritectic reaction, monotectic reaction, low oxygen pressure. #### 1. INTRODUCTION GdBCO has been known to exhibit higher J_c in magnetic fields in comparison with YBCO [1], and thus regarded as a strong alternative to YBCO for coated conductors (CCs). In such a reason, high-performance GdBCO CCs have been fabricated by PLD (pulsed laser deposition) [2,3] and RCE-DR (reactive co-evaporation by deposition and reaction) [4,5] processes. Especially, a newly developed RCE-DR process for high-performance GdBCO CCs is surely promising technology for the commercialization of CCs because it is a cost-effective high-throughput process. Since a liquid phase is involved in the RCE-DR process during the growth of GdBCO films [5], it is very important to understand the solid-liquid phase equilibria around the GdBCO phase in low PO_2 regime not only for a fundamental understanding of the conversion mechanism from amorphous precursor films to GdBCO films but also for further optimization of the RCE-DR process. Although several papers on the equilibrium solid-liquid phase relations for the RE-Ba-Cu-O systems (RE = Y and rare earth elements) [6-9] have been reported, the solid-liquid phase equilibria around the GdBCO phase has never been reported in low PO_2 regime yet, which is the motivation of this study. In this report, on the basis of the GdBCO stability phase diagram experimentally determined in low oxygen pressures [10], we schematically constructed the isothermal sections of three different phase fields on log PO_2 vs. 1/T diagram in the Gd_2O_3 -Ba $_2$ CuO $_y$ -Cu $_2$ O ternary system, and discussed the solid-liquid phase equilibria around the GdBCO phase. # 2. THE PHASE BOUNDARIES CONSIDERED ON THE LOG PO₂ VERSUS 1/T(K⁻¹) DIAGRAM Fig. 1 shows the stability phase diagram of GdBCO in low PO_2 region ranging from 1 to 100 mTorr [10], including the stability lines of GdBCO and the phase boundary line between two different phase fields above the GdBCO stability line. The stability lines for the reduction of CuO \leftrightarrow Cu₂O and the reaction of Gd₂CuO₄ \leftrightarrow Gd₂O₃ + Cu₂O, reported by W. Zhang and K. Osamura [11], are drawn in Fig. 1. The stability line for the reaction of BaCuO₂ \leftrightarrow Ba₂CuO_y + BaCu₂O₂, reported by T. B. Lindemer and E. D. Specht [12], is also drawn in this figure. On the log PO₂ vs. 1/T diagram in Fig. 1, we selected eight points from "a" to "h" for the schematic construction of the isothermal sections representing the solid-liquid phase relations. One can see that the Cu₂O, Ba₂CuO_y and BaCu₂O₂ phases are stable around eight points while the stability line of Gd₂CuO₄ lies across the stability line of GdBCO. Therefore, the stability of Gd₂CuO₄ should be taken into account when we construct the isothermal sections. It is known that a ternary eutectic point in the Y_2O_3 -BaO-CuO system is very close to the $BaCu_2O_2$ composition [6,8]. Similarly, if we assume that the ternary eutectic point in the Gd_2O_3 -BaO-CuO system is also located at the point close to the $BaCu_2O_2$ composition, a ternary liquid phase should form near the ternary eutectic point on the phase diagram. In this case, the solid phases compatible with the ternary liquid phase are Gd_2O_3 , ^{*} Corresponding author: siyoo@snu.ac.kr Fig. 1. The stability phase diagram of GdBCO in low PO_2 ranging from 1 to 100 mTorr [10]. The stability lines of CuO \leftrightarrow Cu₂O [11], BaCuO₂ \leftrightarrow BaCu₂O₂ + Ba₂CuO_y [12], and Gd₂CuO₄ \leftrightarrow Gd₂O₃ + Cu₂O [11] are also represented. $GdBa_6Cu_3O_y$, Gd_2CuO_4 , Ba_2CuO_y , $BaCu_2O_2$, Cu_2O , and GdBCO. Since the ternary liquid phase is incompatible with the compounds having the compositions of Ba/Cu > 2, it is sufficient to consider the isothermal sections within the Gd_2O_3 - Ba_2CuO_y - Cu_2O ternary system for understanding the solid-liquid phase relations around the GdBCO phase. ## 3. ISOTHERMAL SECTION IN Gd₂O₃-Ba₂CuO_y-Cu₂O SYSTEM Based on the stability phase diagram of GdBCO in low oxygen pressures in Fig. 1, we schematically construct the isothermal sections at the specific T - PO_2 conditions (i.e., "a" to "h" points) in order to clearly represent the solid-liquid phase equilibria around the GdBCO phase. As previously mentioned, the stability of Gd_2CuO_4 is also considered at each phase field for the construction of the isothermal sections. The isothermal sections at eight points in the Gd_2O_3 - Ba_2CuO_y - Cu_2O system are illustrated in this section. We mainly focus on the variation in the isothermal sections across the invariant points including the pseudobinary peritectic reaction of $GdBCO \leftrightarrow Gd_2O_3 + L_1$, the ternary peritectic reaction of $GdBCO \leftrightarrow Gd_2O_3 + GdBa_6Cu_3O_y$ + L_2 , and the monotectic reaction of $L_1 \leftrightarrow GdBa_6Cu_3O_y$ + L_2 . ### 3.1. Pseudobinary peritectic reaction: $GdBCO \leftrightarrow Gd_2O_3 + L_1$ In the PO_2 region ranging from ~10 to 100 mTorr, GdBCO is decomposed into $Gd_2O_3 + L_1$ by the pseudobinary peritectic reaction. At the condition of the point "a" in Fig. 1, both GdBCO and Gd_2CuO_4 are stable, and the ternary liquid phase is compatible with GdBCO, $GdBa_6Cu_3O_9$, Ba_2CuO_9 , $BaCu_2O_2$, and Cu_2O as shown in Fig. 2. It is noteworthy that since a binary liquid of BaO-CuO cannot exist in this condition and $BaCuO_2$ is Fig. 2. Isothermal section of the Gd_2O_3 -Ba₂CuO_y-Cu₂O system. The T - PO_2 condition is given at the point "a" and "a" in Fig. 1. unstable, $BaCu_2O_2$ near the ternary liquid phase should exist as a stable solid phase. At the condition represented by the point "b" in Fig. 1, Gd_2CuO_4 is no more stable, and thus it is represented by a hollow circle as shown in Fig. 3. In comparison with Fig. 2, the ternary liquid region becomes wider because temperature is higher at the same PO_2 . At the point "c" above the GdBCO stability line in Fig. 1, GdBCO becomes unstable as represented by the hollow circle. Instead, Gd_2O_3 and the ternary liquid phase are stable as shown in Fig. 4. The area of the liquid region becomes much wider compared with that in Fig. 3. The $BaCu_2O_2$ phase also exists as the stable solid phase compatible with the ternary liquid phase. Fig. 3. Isothermal section of the Gd_2O_3 - Ba_2CuO_y - Cu_2O system. The T - PO_2 condition is given at the point "b" in Fig. 1. Fig. 4. Isothermal section of the Gd_2O_3 -Ba₂CuO_y-Cu₂O system. The T - PO_2 conditions are given at the points "c" and "h" in Fig. 1. ### 3.2. Ternary peritectic reaction: GdBCO ↔ Gd₂O₃ + GdBa₆Cu₃O_v + L₂ In the PO_2 region of ranging from 1 to ~ 10 mTorr, GdBCO is decomposed into $Gd_2O_3 + GdBa_6Cu_3O_y + L_2$ by the ternary peritectic reaction. The isothermal section of the point "d" in Fig. 1 is similar to that of point "a", in which both GdBCO and Gd_2CuO_4 are stable. However, it is uncertain how the area of liquid region at the point "d" will be changed in comparison with that at the point "a" since the effects of lowering temperature and lowering oxygen pressure on the stability of the liquid phase are considered to be opposite each other [13]. At higher temperature (the Fig. 5. Isothermal section of the Gd_2O_3 -Ba₂CuO_y-Cu₂O system. The T - PO_2 condition is given at the point "e" in Fig. 1. Fig. 6. Isothermal section of the Gd_2O_3 -Ba₂CuO_y-Cu₂O system. The T - PO_2 conditions are given at the points "f" and "g" in Fig. 1. point "e" in Fig. 1), GdBCO is unstable while Gd_2CuO_4 is still stable. At this condition, Gd_2CuO_4 becomes compatible with the liquid phase as shown in Fig. 5. The GdBCO composition locates within the composition triangle composed of Gd_2O_3 , $GdBa_6Cu_3O_y$, and L_2 , which indicates the ternary peritectic reaction of $GdBCO \leftrightarrow Gd_2O_3 + GdBa_6Cu_3O_y + L_2$. At much higher temperature (the point "f" in Fig. 1), Gd_2CuO_4 becomes unstable, and the liquid region should be enlarged as shown in Fig. 6. ### 3.3. Monotectic reaction: $L_1 \leftrightarrow GdBa_6Cu_3O_v + L_2$ In the PO_2 region of ranging from 1 to ~10 mTorr, the monotectic reaction of $L_1 \leftrightarrow GdBa_6Cu_3O_y + L_2$ occurs. Although the area of the ternary liquid phase is not identical, the isothermal section of the point "g" is considered to be similar to that of the point "f" as shown in Fig. 6. At much high temperature, the liquid phase region is enlarged so that the composition point of GdBCO lies on the tie-line between Gd_2O_3 and liquid phase (Fig. 4), indicating the monotectic reaction of $L_1 \leftrightarrow GdBa_6Cu_3O_y + L_2$. #### 4. SUMMARY We report the solid-liquid phase equilibria on the GdBCO stability phase diagram in low PO_2 regime ranging from 1 to 100 mTorr. Three invariant reactions, including a pseudobinary peritectic reaction of GdBCO \leftrightarrow Gd₂O₃ + liquid (L₁), a ternary peritectic reaction of GdBCO \leftrightarrow Gd₂O₃ + GdBa₆Cu₃O_y + liquid (L₂), and a monotectic reaction of L₁ \leftrightarrow GdBa₆Cu₃O_y +L₂, could be demonstrated by schematically constructing the isothermal sections at various T- PO_2 conditions. The solid-liquid phase equilibria around the GdBCO phase could be understood on the Gd₂O₃-Ba₂CuO_y-Cu₂O system. Interestingly, above the decomposition point of GdBCO, Gd_2O_3 is compatible with the liquid phase or $GdBa_6Cu_3O_y + liquid$ phases in the PO_2 region of 1 - 100 mTorr while Gd_2BaCuO_5 is compatible with the liquid phase in high oxygen pressure like air. #### REFERENCES - M. Murakami, N. Sakai, T. Higuchi, and S. I. Yoo, "Melt-processed light rare earth element-Ba-Cu-O," Superconductor Science & Technology, vol. 9, pp. 1015-1032, Dec. 1996. - [2] H. Kutami, T. Hayashida, S. Hanyu, C. Tashita, M. Igarashi, H. Fuji, Y. Hanada, K. Kakimoto, Y. Iijima, and T. Saitoh, "Progress in research and development on long length coated conductors in Fujikura," *Physica C-Superconductivity and Its Applications*, vol. 469, pp. 1290-1293, Aug-Oct. 2009. - [3] K. P. Ko, R. K. Ko, S. Y. Lee, H. K. Kim, S. H. Moon, S. S. Oh, and S. I. Yoo, "GdBa₂Cu₃O₇₋₈ Coated Conductor on BaZrO₃-Buffered IBAD-MgO Template," *IEEE Transactions on Applied Superconductivity*, vol. 19, pp. 3427-3430, Jun. 2009. - [4] S.H. Moon. "Advanced fast RCE process for REBCO coated conductor" Invited talk in 23rd International Symposium on Superconductivity, Nov. 1-3, 2010, Tsukuba, Japan. - [5] S.I. Yoo, "The high rate conversion mechanism of GdBCO coated conductors by a new high throughput process, RCE-DR," Invited talk in 2011 MRS spring meeting, Apr. 25-29, 2011, San Fransisco, USA. - [6] T. Aselage and K. Keefer, "Liquidus relations in Y-Ba-Cu oxides," Journal of Materials Research, vol. 3, pp. 1279-1291, Nov-Dec. 1988. - [7] J. L. MacManus-Driscoll, "Materials chemistry and thermodynamics of REBa₂Cu₃O_{7-x}," *Advanced Materials*, vol. 9, pp. 457-&, May 1997. - [8] W. Wong-Ng and L. P. Cook, "Liquidus diagram of the Ba-Y-Cu-O system in the vicinity of the Ba₂YCu₃O_{6+x} phase field," *Journal of Research of the National Institute of Standards and Technology*, vol. 103, pp. 379-403, Jul-Aug. 1998. - [9] M. Kuznetsov, C. Krauns, Y. Nakamura, T. Izumi, and Y. Shiohara, "Ternary phase diagram of SmO_{1.5}-BaO-CuO_y system for melt processing," *Physica C*, vol. 357, pp. 1068-1072, Aug. 2001. - [10] J.W. Lee, S. M. Choi, J. H. Lee, S. H. Moon, and S. I. Yoo, to be submitted. - [11] W. Zhang and K. Osamura, "Oxygen-pressure dependence of Cu₂O-CuO-Gd₂O₃ phase-diagram," *Metallurgical Transactions B-Process Metallurgy*, vol. 22, pp. 705-710, Oct. 1991. - [12] T. B. Lindemer and E. D. Specht, "The BaO-Cu-CuO system solid-liquid equilibria and thermodynamics of BaCuO₂ and BaCu₂O₂," *Physica C*, vol. 255, pp. 81-94, Dec. 1995. - [13] J. K. R. Weber, P. C. Nordine, K. C. Goretta, and R. B. Poeppel, "Effects of oxygen-pressure on the structure of Y-Ba-Cu-O materials formed by containerless melting and solidification," *Journal of Materials Research*, vol. 9, pp. 1657-1660, Jul. 1994.