Browse > Article
http://dx.doi.org/10.9713/kcer.2019.57.5.701

Nitrogen-doped Nickel Oxide Catalysts for Oxygen-Evolution Reactions  

Lee, Jin Goo (School of Chemistry, University of St Andrews)
Jeon, Ok Sung (Chemical and Biomolecular Engineering, Yonsei University)
Shul, Yong Gun (Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Korean Chemical Engineering Research / v.57, no.5, 2019 , pp. 701-705 More about this Journal
Abstract
Oxygen-evolution reaction (OER) in alkaline media has been considered as a key process for various energy applications. Many types of catalysts have been developed to reduce high overpotential in OER, such as metal alloys, metal oxides, perovskite, or spinel. Nickel oxide (NiO) has high potential to increase OER activity according to volcano plots. The exact mechanisms for OER has not been discovered, but defects such as cation or anion vacancy typically act as an active site for diverse electrochemical reactions. In this study, nitrogen was doped into NiO by using ethylenediamine for formation of Ni vacancy, and the effects of N doping on OER activity and stability was studied.
Keywords
Nitrogen doping; Nickel oxide; Oxygen-evolution reaction; Durability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Doyle, R. L. and Lyons, M. E. G., Chapter 2 The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design, Springer International Publishing Switzerland 2016, DOI 10.1007/978-3-319-29641-8_2
2 Koper, M. T. M. J., "Thermodynamic Theory of Multi-electron Transfer Reactions: Implications for Electrocatalysis," Electroanal. Chem., 660, 254(2011).   DOI
3 Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. and Shao-Horn, Y., "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles," Science, 334, 1383(2011).   DOI
4 Yagi, S., Yamada, I., Tsukasaki, H., Seno, A., Murakami, M., Fujii, H., Chen, H., Umezawa, N., Abe, H., Nishiyama, N. and Mori, S., "Covalency-reinforced Oxygen Evolution Reaction Catalyst," Nat. Commun., 6, 8249(2015).   DOI
5 Chen, C.-F., King, G., Dickerson, R. M., Papin, P. A., Gupta, S., Kellogg, W. R. and Wu, G., "Oxygen-deficient $BaTiO_{3-x}$ Perovskite Oxides as an Efficient Bifunctional Oxygen Electrocatalyst," Nano. Energy., 13, 423(2015).   DOI
6 Risch, M., Grimaud, A., May, K. J., Stoerzinger, K. A., Chen, T. J., Mansour, A. N. and Shao-Horn, Y., "Structural Changes of Cobalt-Based Perovskites upon Water Oxidation Investigated by EXAFS," J. Phys. Chem. C 117, 8628(2013).   DOI
7 Grimaud, A., May, K. J., Carlton, C. E., Lee, Y.-L., Risch, M., Hong, W. T., Zhou, J. and Shao-Horn, Y., "Double Perovskites as a Family of Highly Active Catalysts for Oxygen Evolution in Alkaline Solution," Nat. Commun., 4, 2439(2013).   DOI
8 Bockris, J. O. M. and Otagawa, T. J., "The Electrocatalysis of Oxygen Evolution on Perovskites," Electrochem. Soc., 131, 290(1984).   DOI
9 May, K. J., Carlton, C. E., Stoezinger, K. A., Risch, M., Suntivich, J., Lee, Y.-L., Grimaud, A. and Shao-Horn, Y. J., "Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts," Phys. Chem. Lett., 3, 3264(2012).   DOI
10 Carbonio, R. E., Fierro, C., Tryk, D., Scherson, D. and Yeager, E. J., "Perovskite-type oxides: Oxygen electrocatalysis and Bulk Structure," Power Sources, 22, 387(1988).   DOI
11 Andersen, N. I., Serov, A. and Atanassov, P., "Metal Oxides/CNT Nano-composite Catalysts for Oxygen Reduction/oxygen Evolution in Alkaline Media," Applied Catalysis B: Environmental, 163, 623-627(2015).   DOI
12 Grimaud, A., Carlton, C. E., Risch, M., Hong, W. T., May, K. J. and Shao-Horn, Y. J., "Oxygen Evolution Activity and Stability of $Ba_6Mn_5O_{16}$, $Sr_4Mn_2CoO_9$, and $Sr_6Co_5O_{15}$: The Influence of Transition Metal Coordination," Phys. Chem. C, 117, 25926(2013).   DOI
13 Cheng, Y. and Jiang, S. P., "Advances in Electrocatalysts for Oxygen Evolution Reaction of Water Electrolysis-from Metal Oxides to Carbon Nanotubes," Progress in Natural Science: Materials International 25, 545-553(2015).   DOI
14 Favaro, M., Valero-Vidal, C., Eichhorn, J., Toma, F. M., Ross, P. N., Yano, J. Liu Z. and Crumlin, E. J., "Elucidating the Alkaline Oxygen Evolution Reaction Mechanism on Platinum," J. Mater. Chem. A, 5, 11634(2017).   DOI
15 Wang, L., Zhao, X., Lu, Y., Xu, M., Zhang, D., Ruoff, R. S., Stevenson, K. J. and Goodenough, J. B., "$CoMn_2O_4$ Spinel Nanoparticles Grown on Graphene as Bifunctional Catalyst for Lithium-Air Batteries," Electrochem. Soc., 158, A1379-A1382(2011).   DOI
16 Jiang, N., You, B., Sheng, M. and Sun, Y., "Electrodeposited Cobalt-phosphorous-derived Films as Competent Bifunctional Catalysts for Overall Water Splitting," Angew. Chem., 127, 6349-6352(2015).   DOI
17 Chang, J., Xiao, Y., Xiao, M., Ge, J., Liu, C. and Xing, W., "Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution," ACS Catal., 5, 6874-6878(2015).   DOI
18 Zhu, Y., Zhou, W., Chen, Z.-G., Chen, Y., Su, C., Tade, M. O. and Shao, Z., "$SrNb_{0.1}Co_{0.7}Fe_{0.2}O_{3-d}$ Perovskite as a Next-Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution," Angew. Chem., 127, 3969-3973(2015).   DOI
19 Osgood, H., Devaguptapu, S. V., Xu, H., Cho, J. and Wu, G., "Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media," Nano Today, 11, 601-625 (2016).   DOI
20 Cao, R., Lee, J.-S., Liu, M. and Cho, J., "Recent Progress in Non-Precious Catalysts for Metal-Air Batteries," Adv. Energ. Mater., 2, 816-829(2012).   DOI
21 Man, I. C., Su, H.-Y., Calle-Vallejo, F., Hansen, H. A., Martinez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Norskov, J. K. and Rossmeisl, J., "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem 3, 1159-1165(2011).   DOI
22 Schulze, M. and Gulzow, E., "Degradation of Nickel Anodes in Alkaline Fuel Cells," Journal of Power Sources, 127, 252-263(2004).   DOI
23 Chawla, A. K., Singhal, S., Cupta, H. O. and Chandra, R., "Influence of Nitrogen Doping on the Sputter-deposited $WO_3$ Films," Thin Solid Films, 518, 1430(2009).   DOI
24 Chung, H. T., Won, J. H. and Zelenay, P., "Active and Stable Carbon Nanotube/nanoparticle Composite Electrocatalyst for Oxygen Reduction," Nature Communications, 4, 1922(2013).   DOI
25 Jiang, J., Liu, Q., Zeng, C. and Ai, L., "Cobalt/molybdenum Carbide@ N-doped Carbon as a Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions," J. Mater. Chem. A, 5, 16929(2017).   DOI
26 Liu, X. and Dai, L., "Carbon-based Metal-free Catalysts," Nature Reviews Materials, 1, 16064(2016).   DOI
27 Hu, J., Zhu, K., Chen, L., Yang, H., Li, Z., Suchopar, A. and Richards, R., "Preparation and Surface Activity of Single-Crystalline NiO(111) Nanosheets with Hexagonal Holes: A Semiconductor Nanospanner," Adv. Mater., 20, 267(2008).   DOI
28 Lin, F., Gillaspie, D. T., Dillon, A. C., Richards, R. M. and Engtrakul, C., "Nitrogen-doped Nickel Oxide Thin Films for Enhanced Electrochromic Applications," Thin Solid Films, 527, 26-30(2013).   DOI
29 Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science 293, 269(2001).   DOI
30 Soriano, L., Gutierrez, A., Preda, I., Palacin, S., Sanz, J. M., Abbate, M., Trigo, J. F., Vollmer, A. and Bressler, P. R., "Nitrogen-vacancy center in Diamond: Model of the Electronic Structure and Associated Dynamics," Phys. Rev. B, 74 (2006).