• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,824, Processing Time 0.033 seconds

Electrochemical Properties of Oxygen Adducts Tetradentate Schiff Base Cobalt (II) Complexes in Pyridine (Ⅲ) (Pyridine 용액에서 네자리 Schiff Base Cobalt (II) 착물들의 산소첨가 생성물에 대한 전기화학적 성질 (제 3 보))

  • Ky Hyung Cho;Seong Seob Seo;Dong Chul Chon
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.295-303
    • /
    • 1989
  • Tetradentate Schiff base cobalt(II) complex; Co(SND) and Co(SOPD) were synthesized, and these complexes were allowed to react with dry oxygen to form oxygen adducts cobalt(III) complexes such as $[Co(SND)(Py)]_2O_2$ and $[Co(SOPD)(Py)]_2O_2$ in pyridine. These complexes have been identified by IR specta, T.G.A., magnetic susceptibilities measurements and elemental analysis. It has been found that the oxygen adducts coblat(III) complexes have hexacoordinated octahedral configuration with tetradentate Schiff base cobalt(II), pyridine and oxygen, and the mole ratio of oxygen to cobalt(II) complexes are 1;2. The redox reaction processes of $Co(SND)(Py)_2$ and $Co(SOPD)(Py)_2$ complexes were investigated by cyclic voltammetry with glassy carbon electrode in 0.1M TEAP pyridine. The result of redox reaction processes of Co(III)/Co(II) and Co(II)/Co(I) for $Co(SND)(Py)_2$ and $Co(SOPD)(Py)_2$ complexes are reversible or quasi reversible process but oxygen adducts complexes are irreversible processes. Redox process for oxygen of oxygen adducts complexes was quasi reversible and redox range of potential was $E_{pc}\;=\;-0.96{\sim}-1.03V$ and $E_{pa}\;=\;-0.78{\sim}-0.80V.$

  • PDF

Enhancement in Performance of $Pt/CeO_2$ Catalysts for Single Stage Water-Gas Shift (WGS) Reaction via Controlling the Preparation Conditions (제조 조건 조절을 통한 수성가스전이 반응에서 $Pt/CeO_2$ 촉매 성능 강화)

  • Eum, Ic-Hwan;Jeong, Dae-Woon;Kim, Ki-Sun;Roh, Hyun-Seog;Koo, Kee Young;Yoon, Wang Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.229.2-229.2
    • /
    • 2010
  • 한 단계 수성가스전이반응(Single stage water gas shift reaction)을 위해 높은 산소저장능(OSC: Oxygen Storage Capacity)을 가진 $CeO_2$를 담체로 사용하여 $Pt/CeO_2$ 촉매를 설계하였다. 촉매의 제조 조건은 촉매 활성과 매우 밀접한 관계가 있다. 따라서 $Pt/CeO_2$ 촉매에 제조변수를 다양하게 변화하여 성능을 평가하였다. 촉매 반응 실험은 공간속도(GHSV: Gas Hourly Space Velocity) $45,515h^{-1}$에서 수행하였다. 본 연구에서는 $Pt/CeO_2$ 촉매를 최적화하기 위해 촉매 제조 조건 중 소성온도, 배치 당 제조질량, 전구체 그리고 pH 와 같은 다양한 제조 조건으로 촉매의 성능을 평가하였다.

  • PDF

A Study on the Characteristics of Combustion for Substituting $CO_2\;for\;N_2$ in Combustion Air (연소용 공기중 $N_2$$CO_2$대체에 대한 연소특성 해석)

  • Kim, Han-Seok;Ahn, Kook-Young;Kim, Ho-Keun;Lee, Yun-Won;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.29-35
    • /
    • 2002
  • [$CO_2$] is a well-known greenhouse gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. The central method of low $CO_2$ emission is Oxygen/CxHy combustion. Theoretically Oxygen/CxHy combustion only produces $CO_2\;and\;H_2O$ and allows convenient recovery of $CO_2$. The combustion characteristics, flame stability, composition in the flame zone and temperature profile were studied experimentally for various compositions of oxidant by substituting $CO_2\;for\;N_2$ with the constant $O_2$ concentration. Results showed that flame became unstable due to the high heat capacity, low transport rate and strong radiation effect of $CO_2$ in comparison with those of $N_2$. The reaction zone was quenched and broadened, as the ratio of $CO_2\;to\;N_2$ was increased. The emission of NOx in flue gas decreased due to the decreased temperature of the reaction zone. As the conversion ratio of $CO_2\;to\;N_2$ was increased, the emission of CO and the higher temperature zone increased due to decrease of reaction rate by the a quenching effect.

  • PDF

Corrosion Behavior of Stainless Steel 316 for Carbon Anode Oxide Reduction Application

  • Jeon, Min Ku;Kim, Sung-Wook;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.169-177
    • /
    • 2020
  • Here, the stability of stainless steel 316 (SS-316) was investigated to identify its applicability in the oxide reduction process, as a component in related equipment, to produce a complicated gas mixture composed of O2 and Cl2 under an argon (Ar) atmosphere. The effects of the mixed gas composition were investigated at flow rates of 30 mL/min O2, 20 mL/min O2 + 10 mL/min Cl2, 10 mL/min O2 + 20 mL/min Cl2, and 30 mL/min Cl2, each at 600℃, during a constant argon flow rate of 170 mL/min. It was found that the corrosion of SS-316 by the chlorine gas was suppressed by the presence of oxygen, while the reaction proceeded linearly with the reaction time regardless of gas composition. Surface observation results revealed an uneven surface with circular pits in the samples that were fed mixed gases. Thermodynamic calculations proposed the combination of Fe and Ni chlorination reactions as an explanation for this pit formation phenomenon. An exponential increase in the corrosion rate was observed with an increase in the reaction temperature in a range of 300 ~ 600℃ under a flow of 30 mL/min Cl2 + 170 mL/min Ar.

Use of Hydrazine for Pitting Corrosion Inhibition of Copper Sprinkler Tubes: Reaction of Hydrazine with Corrosion By-Products

  • Suh, Sang Hee;Kim, Sohee;Suh, Youngjoon
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.247-256
    • /
    • 2017
  • The feasibility of using hydrazine for inhibiting pitting corrosion in copper sprinkler tubes was investigated by examining microscopical and structural evolution of corrosion by-products with SEM, EDS, and XRD. Hydrazine removed dissolved oxygen and reduced CuO and $Cu_2O$ as well. The stable phase was changed from CuO to $Cu_2O$ or Cu depending on hydrazine concentration. Hydrazine concentration of 500 ppm could convert all CuO corrosion by-products to $Cu_2O$. In a tightly sealed acryl tube filled with aqueous solution of 500 ppm hydrazine, octahedral $Cu_2O$ particles were formed while plate-like structures with high concentration of Cu, O, N and C were formed near a corrosion pit. The inside structure of a corrosion pit was not altered by hydrazine aqueous solution. Uniform corrosion of copper was almost completely stopped in aqueous solution of 500 ppm hydrazine. Corrosion potential of a copper plate was linearly dependent on log (hydrazine concentration). The concept of stopping pitting corrosion reaction by suppressing oxygen reduction reaction could be verified by applying this method to a reasonable number of real sprinkler systems before full-scale application.

Optimization of Binder Burnout for Reaction Bonded Si3N4 Substrate Fabrication by Tape Casting Method

  • Park, Ji Sook;Lee, Hwa Jun;Ryu, Sung Soo;Lee, Sung Min;Hwang, Hae Jin;Han, Yoon Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.435-440
    • /
    • 2015
  • It is a challenge from an industrial point of view to fabricate silicon nitride substrates with high thermal conductivity and good mechanical properties for power devices from high-purity Si scrap powder by means of thick film processes such as tape casting. We characterize the residual carbon and oxygen content after the binder burnout followed by nitridation as a function of the temperature in the temperature range of $300^{\circ}C-700^{\circ}C$ and the atmosphere in a green tape sample which consists of high-purity Si powder and polymer binders such as polyvinyl butyral and dioctyl phthalate. The optimum condition of binder burnout is suggested in terms of the binder removal temperature and atmosphere. If considering nitridation, the burnout of the organic binder in air compared to that in a nitrogen atmosphere could offer an advantage when fabricating reaction-bonded $Si_3N_4$ substrates for power devices to enable low carbon and oxygen contents in green tape samples.

Thermal Behavior of NiFe2O4 for Hydrogen Generation (NiFe2O4를 이용한 열화학 사이클 H2 제조)

  • Han, S.B.;Kang, T.B.;Joo, O.S.;Jung, K.D.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2003
  • The thermal behavior of $NiFe_2O_4$ prepared by a solid-state reaction was investigated for $H_2$ generation by the thermochemical cycle. The reduction of $NiFe_2O_4$ started from $800^{\circ}C$, and the weight loss was 0.2-0.3 wt% up to $1000^{\circ}C$. In the $H_2O$ decomposition reaction, $H_2$ was generated by oxidation of reduced $NiFe_2O_4$. The crystal structure of $NiFe_2O_4$ maintained during the redox reaction of 5 cycles. From this observation, the lattice oxygen in $NiFe_2O_4$ is released without the structural change during the thermal reduction and oxygen deficient $NiFe_2O_4$ can be restored to the spinel structure of $NiFe_2O_4$.

A Study on Pt-Na/CeO2 Catalysts for Single Stage Water Gas Shift Reaction (Single stage WGS 반응용 Pt-Na/CeO2 촉매 연구)

  • Jeong, Dae-Woon;Shim, Jae-Oh;Jang, Won-Jun;Roh, Hyun-Seog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • Na promoted Pt/$CeO_2$ catalysts with various Na amounts (1, 2, and 3wt%) have been applied to water gas shift reaction (WGS) at a gas hourly space velocity (GHSV) of 45515 $h^{-1}$. 1wt%Pt-2wt%Na/$CeO_2$ catalyst exhibited the highest WGS activity at $240^{\circ}C$ among the catalysts prepared in this study. In addition, 1wt%Pt-2wt%Na/$CeO_2$ catalyst showed relatively stable activity with time on stream. The high activity/stability of 1wt%Pt-2wt%Na/$CeO_2$ catalyst was correlated to its easier reducibility and higher oxygen storage capacity (OSC). As a result, 2wt% Na promoted Pt/$CeO_2$ can be a promising candidate catalyst for the single stage WGS, which requires high intrinsic activity at very high GHSV.

Combustion Characteristics of Methane/Oxygen in Pre-Mixed Swirl Flame (메탄/순산소 예혼합 화염의 선회특성)

  • Kim, Han-Seok;Choi, Won-Seok;Cho, Ju-Hyeong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • The present study has experimentally investigated the effects of $CO_2$ diluted oxygen on the structure of swirl-stabilized flame in a lab-scale combustor. The methane fuel and oxidant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for various amount of carbon dioxide addition to the methane fuel and various swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the hot combustion zone increases at the upstream reaction zone because of an increase in the recirculation flow for an increase in swirl intensity. The hot combustion zone is also increased at the downstream zone by recirculation flow because of an increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensities of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of diluted gas in the reaction zone.

Understanding Underlying Processes of Water Electrolysis (수소 생산을 위한 물 전기분해 이해 및 기술동향)

  • Lee, Jaeyoung;Yi, Youngmi;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.357-365
    • /
    • 2008
  • Hydrogen energy becomes more attractive in that it can resolve the exhaustion of fossil fuels and their environmental problems. Until now, water electrolysis has been a interesting technique to produce hydrogen from non-fossil fuels. In principle, water electrolysis is an environmentally friendly technique to split water into hydrogen and oxygen, so that it can be utilized without any limitation of resources. Herein, we introduce basic understanding and three types of water electrolysis. Furthermore, the research trend and patent analysis will be followed along with an outlook.