Browse > Article

Understanding Underlying Processes of Water Electrolysis  

Lee, Jaeyoung (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Yi, Youngmi (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Uhm, Sunghyun (Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
Publication Information
Applied Chemistry for Engineering / v.19, no.4, 2008 , pp. 357-365 More about this Journal
Abstract
Hydrogen energy becomes more attractive in that it can resolve the exhaustion of fossil fuels and their environmental problems. Until now, water electrolysis has been a interesting technique to produce hydrogen from non-fossil fuels. In principle, water electrolysis is an environmentally friendly technique to split water into hydrogen and oxygen, so that it can be utilized without any limitation of resources. Herein, we introduce basic understanding and three types of water electrolysis. Furthermore, the research trend and patent analysis will be followed along with an outlook.
Keywords
water electrolysis; hydrogen; oxygen; technical trends; environmental friendly technique; energy source;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 B. Sorensen, Hydrogen and Fuel Cells, Elsevier Academic Press, Heidelberg (2005)
2 J. P. Paul and C.-M. Paradier, Carbon Dioxide Chemistry: Environmental Issues, The Royal Society of Chemistry, Cambridge (1994)
3 J. Lee and S. W. Nam. Prospectives of Industrial Chemistry, 9, 1 (2006)
4 K. Sim, S. Moon, and S.-T. Choo, Hydrogen Information, No. 4, 1 (2004)
5 S. Trasatti, J. Electroanal. Chem., 39, 163 (1972)   DOI   ScienceOn
6 B. Kroposki, Electrolysis : Information and Opportunities for Electric power Utilities, NREL Technical Report (2006)
7 Stuart Energy 사 (http://www.stuartenergy.com)
8 M. Jafarian, O. Azizi, F. Gobal, and M. G. Mahjani, Int. J. Hydrog. Energy, 32, 1686 (2007)   DOI   ScienceOn
9 I. Papagiannakis, Studying and Improving the Efficiency of Water Electrolysis Using a Proton Exchange Membrane Electrolyser, The Energy Systems Research Unit (ESRU) (2005)
10 S. Uhm, Y. Yi, H. J. Lee, and J. Lee, Adv. Mater., submitted
11 T. M. Maloney, Proton Energy Systems, An Electrolysis-Based Pathway Towards Hydrogen Fueling, IEEE Conference (2005)
12 L. A. Kibler, ChemPhysChem, 7, 985 (2006)   DOI   ScienceOn
13 Japan Patent (일본특허) : 4035313, 4095782, 4000415, 3771146, 3986285, 3839419, 3791477, 3750802, 3733463, 3855121, 3772261, 3723119, 3723116 3717424, 3604620, 3414720, 3307630
14 D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Kluwer, London (1992)
15 M. A. Peavey, Fuel from water, Merit. Inc., Louisville (2003)
16 T. E. Lipman and C. Brooks, Hydrogen energy stations : poly-production of electricity, Hydrogen, and thermal energy, Clean energy group (2006)
17 G. Mulder, J. Hetland, and G. Lenaers, Int. J. Hydrog. Energy, 32, 1324 (2007)   DOI   ScienceOn
18 Norsk hydro 사 (http://www.hydro.com)
19 Teledyne Energy Systems (http://www.teledynees.com)
20 J. Greeley and M. Mavrikakis, Nat. Mater., 3, 810 (2004)   DOI   ScienceOn
21 EU Patent (유럽특허, EP) : 1570110, 1397583, 1303028, 1240274, 1264008, 1240274
22 Hydrogen Energy R&D Center (http://www.h2.re.kr)
23 J. Turner, G. Sverdrup, M. K. Mann, P. C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans, and D. Blake, Int. J. Energy Res., 32, 379 (2008)   DOI   ScienceOn
24 J. Greeley, J. K. Norskov, L. A. Kibler, A. M. El-Aziz, and D. M. Kolb, ChemPhysChem, 7, 1032 (2006)   DOI   ScienceOn
25 W. Peschka, Int. J. Hydrog. Energy, 23, 27 (1998)   DOI   ScienceOn
26 H. Wendt and G. Kreysa, Electrochemical Engineering, Springer, Berlin (1999)
27 J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and J. K. Norskov, Nat. Mater., 5, 909 (2006)   DOI   ScienceOn
28 J. Ivy, NREL Milestone Report (NREL/MP-560-36734): Summary of Electrolytic Hydrogen Production, US DOE (2004)
29 R. B. Dopp, Hydrogen generation via water electrolysis using highly efficient nanometal electrodes, Quantum Sphere, Inc. (2007)
30 Korea Patent (한국특허) : 0822034, 0776353, 0756518, 0754909, 0736163, 0736161, 0621565, 0567357, 0389368, 0835929, 0684685, 0677668, 0660176, 0654321, 0632181, 0594379, 0493811, 0456295, 0424665, 0424006, 0414880, 0407481, 0406933, 0355311, 0423499, 0417285, 0396698, 0380545, 0366915, 0361830, 0335853, 0313946, 0234692
31 U.S. Patent (미국특허) : US7381313, US7351316, US7331179, US7326329, US7261874, US7258779, US7247950, US7241522, US7241522 US7146918, US71408777, US7100542, US7048839, US7005075, US6977120, US6890419, US6841046, US7323089, US6740436, US6630061
32 P. A. Lessing, J. Mater. Sci., 42, 3477 (2007)   DOI
33 Technical and energy economic specifications, US. DOE (2002)
34 Proton Energy Systems (http://www.protonenergy.com)