• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.025 seconds

Structural and electrical property studies dependent on the molding pressure in high-Tc superconductor $Y_1Ba_2Cu_3O_7-\delta$ (성형 압력변화에 따른 고온초전도체 $Y_1Ba_2Cu_3O_7-\delta$)

  • 김채옥;박정수;이교운
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.18-23
    • /
    • 1996
  • The molding pressure is also one of the important parameters in the preparation of HTSC materials by the solid state reaction method. In the present study, changes in structural, electrical and microstructural proper-ties with the molding pressure in YiB $a_{2}$C $u_{3}$ $O_{70{\delta}}$ superconductors have been performed. The investigated molding pressures were 0.5*10$^{3}$ N/c $m^{2}$, 1*10$^{3}$ N/c $m^{2}$, 2*10$^{3}$ n/c $m^{2}$ and 4*10$^{3}$ N/c $m^{2}$. As the molding pressure increased, the anisotropy of the crystal structure decreased and the grains have been grown preferentially in a c-axis direction. Since the size of the grain becomes larger with the decrease of the porosity, denser textures are formed. The results indicated that the critical current density is improved resulting from the enhanced densification due to higher molding pressure. When the molding pressure was between 1*10$^{3}$ N/c $m^{2}$ and 2*10$^{3}$ N/c $m^{2}$, while it did not affect the oxygen deficiency and Tc, the increase of the molding pressure affects remarkably on grain size and densification of the $Y_{1}$B $a_{2}$C $u_{3}$ $O_{7-{\delta}}$. When the molding pressure is larger than 2*10$^{3}$ N/c $m^{2}$, electrical proper-ties are independent on the molding pressure..

  • PDF

Analysis on Variation of Primary Elements of Stainless Steel Interacting with Alkali Solution (알칼리 전해액의 상호작용에 의한 Stainless Steel 주성분의 변화 분석)

  • Byun, Chang-Sub;Lim, Soo-Gon;Kim, Su-Kon;Choi, Ho-Sang;Shin, Hoon-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.522-527
    • /
    • 2013
  • In this paper, We studied the change of surface and variation of elements on both electrodes of hydrogen generator of alkaline electrolysis in use of FE-SEM and SIMS. We used the stainless steel 316(600 ${\mu}m$) as electrode in condition of 25%KOH, $60^{\circ}C$ Temperature. The results show that the intensity of elements (C, Si, P, S, Ti, Cr, Mn, Fe, Ni, Mo) of Positive Electrode are decreased as much as about $10^1{\sim}10^3 $than the original electrode. Thickness of Positive Electrode is decreased about 40 ${\mu}m$ after chemical reaction. The negative electrode, however, shows a slight variation in the intensity of elements (C, Si, P, Fe, Ni, Mn, Mo) but Change of thickness and surface' shape of electrode show nothing after chemical reaction. The change in thickness and variation of Stainless Steel 316 cause the lifetime of electrode to be shorted. We also observed hydrogen, oxygen, potassium in both electrodes. Especially, The potassium is increased in proportional with depth of positive electrode. this means the concentration of alkali solutions is changed. and so we have to supply alkaline solution to generator in order to produce same quantity of hydrogen gas continuously. we hope that this study gives a foundation to develop the electrode for hydrogen generator of alkaline electrolysis.

Optimal Condition for Torrefaction of Eucalyptus by Response Surface Methodology (반응표면분석법을 이용한 유칼립투스의 반탄화 최적조건 탐색)

  • Kim, Young-Hun;Na, Byeong-Il;Lee, Soo-Min;Lee, Hyoung-Woo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.497-506
    • /
    • 2013
  • The optimal condition for the torrefaction of eucalyptus (Eucalyptus globulus) was investigated by response surface methodology. The carbon content in the torrefied biomass increased with the severity factor (SF), while hydrogen and oxygen contents decreased. The calorific value of torrefied biomass ranged from 20.23 to 21.29 MJ/kg, depending on the torrefaction conditions. This implied that the energy contained in the torrefied biomass increased by 1.6 to 6.9%, when compared with that of the untreated biomass. The weight loss of biomass increased as the SF increased. The Code level of reaction temperature had the highest impact on the energy yield of torrefied biomass, while the effect of Code level of reaction time was considerably low. The highest energy yield was obtained at low SF.

Surface Modification of Polymeric Material Using Atmospheric Plasma (대기압 플라즈마를 이용한 고분자 소재의 표면개질)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.433-439
    • /
    • 2008
  • An atmospheric plasma pre-treatment method was applied to polyurethane foam (density: 0.27) and rubber (butadiene rubber) to improve its contact angle and adhesion using atmospheric plate type reactor. In order to investigate the optimum reaction condition of plasma treatment, type of treatment gas (nitrogen, argon, oxygen, air), rate of gas flow ($30{\sim}100\;mL/min$), and treated time ($0{\sim}30\;s$) were examined in a plate plasma reactor. The result of the surface modification with respect to the treatment procedure was characterized by using SEM and ATR-FTIR. Due to a decrease of the contact angle of various materials, the greatest adhesion strength was achieved at optimum condition such as flow rate of 100 mL/min, reaction time of polyurethane foam 10 s and rubber 3 s for an atmosphere nitrogen gas. Consequently, the atmospheric plasma treatment reduced the wettability of the polyurethane foam and rubber also resulted in the improvement of the adhesion.

One-pot Synthesis of Hydrous MnO2 Nanowires for Selective Oxidative Transformation of Furfuryl Alcohol (Furfuryl 알코올의 선택적 산화 전환에 대한 수화 이산화망간 나노와이어의 One-pot 합성)

  • Mobina, Irshad;Choi, Bong Gill;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.49-53
    • /
    • 2019
  • Hydrous $MnO_2$ nanowires were easily synthesized by an one-pot synthesis with a simple hydrothermal method. As prepared hydrous $MnO_2$ nanowires were characterized with scanning emission microscopy (SEM), transmit emission microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET). They showed a good catalytic activity with the suitable nano-size of 4-5 nm and morphology. The furfuryl alcohol was selected as a substrate and the reaction was carried out in a toluene solvent at $100^{\circ}C$ under the atmospheric pressure of oxygen. The hydrous $MnO_2$ nanowire catalyst exhibited an excellent yield of furfural with the first-rate selectivity and conversion. The catalytic performance during recycle tests was also carried out and the catalyst showed a good mechanical strength with a negligible loss in the activity over five reaction cycles.

Clinical Features of Respiratory Syncytial Virus Infection in Neonates: A Single Center Study

  • Chang, Sung Hui;Jang, Gwang Cheon;Yoon, Shin Won
    • Neonatal Medicine
    • /
    • v.25 no.4
    • /
    • pp.144-152
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the clinical characteristics of Respiratory syncytial virus (RSV) infection during the neonatal period to provide information that is useful in clinical practice and suggest extension of the palivizumab administration. Methods: Neonates admitted to the National Health Insurance Service Ilsan Hospital neonatal intensive care unit due to respiratory symptoms and for whom multiplex reverse transcription-polymerase chain reaction and multiplex real time-polymerase chain reaction tests were performed between October 2011 and May 2016 were included in this study. Medical records were retrospectively reviewed, and data was collected for 156 neonates. Results: Among the 156 neonates, RSV was detected in 114 (73.1%), non-RSV in 25 (16%), and no virus in 17 (10.9%). The majority were full term infants (92.4%) and peak incidence of RSV infection was in January. Post-natal care center infection was more common in the RSV group (46.6%) than that in the other virus groups (24%, P=0.0243). Clinical symptoms were severe in the RSV group in contrast to that in the non-RSV or others groups. The RSV group frequently needed oxygen therapy (P=0.0001) and the duration of hospital stays were longer (P=0.0001). Conclusion: RSV is a significant cause of respiratory infection in neonates and the severity is higher in contrast to that with other viral causes of infection. Infants in post-natal care centers have a high-risk of developing RSV infections; therefore, palivizumab administration may be considered in this group to prevent hospitalization and reduce the duration of hospital stay.

Study on the Reduction of Molten EAF Slag (용융 전기로 슬래그의 환원반응에 관한 연구)

  • Joo, Seong-Woong;Shin, Jong-Dae;Shin, Dong-Kyung;Hong, Seong-Hun;Ki, Jun-Sung;Hwang, Jin-Il;You, Byung-Don
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.753-761
    • /
    • 2012
  • The reduction behavior of low level oxides such as (T.Fe), (MnO) and ($P_2O_5$) in molten EAF slag was investigated using commercial reductants. In an air atmosphere, the slag volume increased and the reduction rate of the slag was very low due to the oxidation loss of reductants by oxygen in the air. The reduction rate of the slag was also low when a commercial reductant was used alone in an Ar gas atmosphere. The reason is probably because the material transfer through the interface between the slag and reductant is difficult due to the formation of high melting point oxide. When reductants were mixed with burnt lime in order to form low melting point reaction products, the reduction rate of the slag increased up to the range of 45-70%. By using the mixtures of reductants and burnt lime so as to form a low melting point slag at the reaction end, the reduction rate of the slag was improved up to 60-85%.

Deoxidation of Off-grade Ti scrap by Molten Mg in YCl3-MgCl2 Molten Salt (YCl3-MgCl2 혼합 용융염 중 용융 Mg에 의한 Off-grade Ti 스크랩의 탈산)

  • Jung, Jae-Heon;Lee, So-Yeong;Park, Sung-Hun;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.46-52
    • /
    • 2021
  • Off-grade Ti generated from smelting and mechanical processing has a high oxygen content. In this work, off-grade Ti was deoxidized using Mg and a chloride mixture as the reductant and flux, respectively. The experiments were conducted in the α-Ti temperature range (1,023~1,123 K) and the effects of the reaction time, reaction temperature, quantitiy of Mg and chloride ratio on deoxidation were investigated. Notably, when YCl3 is used as the flux to react with MgO, it is possible to reduce the activity of MgO. Therefore Ti can be deoxidized using Mg. In this study, the O content was decreased from 0.5 wt% to 0.1004 wt% at 1073 K, for 6 hours, with Mg=3.6 g and $X_{YCl_3}=0.22$.

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis (음이온교환막 수전해 촉매기술 동향)

  • Kim, Jiyoung;Lee, Kiyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.69-80
    • /
    • 2022
  • The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.

A Preliminary Study on Simulating the Hydrogen Production Process through Biomass Gasification Using Rice Husks from Korea (한국 왕겨 바이오매스의 가스화를 통한 수소 생산 공정모사 예비 연구)

  • JIHYUN SON;MIRAE YU;MYUNGJI KIM;SANGHUN LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.699-706
    • /
    • 2022
  • Recently, hydrogen production is attracting attention. In this study, a process simulation was conducted on the gasification reaction to produce hydrogen using rice husks, which are produced as by-products of rice. For this purpose, Chuchung, Odae, and Dongjin rice, which are rice varieties produced in Korea, were compared with the literature. The Korean rice contained more hydrogen and less oxygen compared to the literature. As a result of the simulation, large amounts of H2 and CH4 and small amounts of CO2 and CO were produced accordingly. The conditions to maximize hydrogen production were a gasification reaction temperature of 700℃ and an Steam-to-Biomass (S/B) ratio of 0.4-0.6. However, because the S/B ratio is related to the gasification catalyst degradation, the model needs to be improved through additional experiments in the future. This study showed the possibility of hydrogen production using Korean rice husks, which had not been reported.