Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.699

A Preliminary Study on Simulating the Hydrogen Production Process through Biomass Gasification Using Rice Husks from Korea  

JIHYUN SON (Department of Climate and Energy Systems Engineering, Ewha Womans University)
MIRAE YU (Department of Climate and Energy Systems Engineering, Ewha Womans University)
MYUNGJI KIM (Department of Climate and Energy Systems Engineering, Ewha Womans University)
SANGHUN LEE (Department of Climate and Energy Systems Engineering, Ewha Womans University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 699-706 More about this Journal
Abstract
Recently, hydrogen production is attracting attention. In this study, a process simulation was conducted on the gasification reaction to produce hydrogen using rice husks, which are produced as by-products of rice. For this purpose, Chuchung, Odae, and Dongjin rice, which are rice varieties produced in Korea, were compared with the literature. The Korean rice contained more hydrogen and less oxygen compared to the literature. As a result of the simulation, large amounts of H2 and CH4 and small amounts of CO2 and CO were produced accordingly. The conditions to maximize hydrogen production were a gasification reaction temperature of 700℃ and an Steam-to-Biomass (S/B) ratio of 0.4-0.6. However, because the S/B ratio is related to the gasification catalyst degradation, the model needs to be improved through additional experiments in the future. This study showed the possibility of hydrogen production using Korean rice husks, which had not been reported.
Keywords
Hydrogen; Biomass; Rice husk; Process simulation; Gasification;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 W. J. Cho, Y. G. Mo, T. Y. Song, Y. S. Baek, and S. S. Kim, "Synthesis gas production from gasification of woody biomass", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 6, 2010, pp. 587594. Retrieved from https://koreascience.kr/article/JAKO201019240638768.page.   DOI
2 M. A. Babatabar and M. Saidi, "Hydrogen production via integrated configuration of steam gasification process of biomass and watergas shift reaction: process simulation and optimization", Int. J. Energy Res., Vol. 45, No. 13, 2021, pp. 1937819394, doi: https://doi.org/10.1002/er.7087.   DOI
3 S. J. Park, M. H. Kim, and H. M. Shin, "Chemical compositions and thermal characteristics of rice husk and rice husk ash in Korea", J. Biosyst. Eng., Vol. 30, No. 4, 2005, pp. 235241, doi: https://doi.org/10.5307/JBE.2005.30.4.235.   DOI
4 F. M. Alptekin and M. S. Celiktas, "Review on catalytic biomass gasification for hydrogen production as a sustainable energy form and social, technological, economic, environmental, and political analysis of catalysts", ACS Omega, Vol. 7, No. 29, 2022, pp. 2491824941, doi: https://doi.org/10.1021/acsomega.2c01538.   DOI
5 E. Balu, U. Lee, and J. N. Chung, "High temperature steam gasification of woody biomass - a combined experimental and mathematical modeling approach", Int. J. Hydrogen Energy, Vol. 40, No. 41, 2015, pp. 1410414115, doi: https://doi.org/10.1016/j.ijhydene.2015.08.085.   DOI
6 J. Bae, S. Lee, S. Kim, J. Oh, S. Choi, M. Bae, I. Kang, and S. P. Katikaneni, "Liquid fuel processing for hydrogen production: a review", Int. J. Hydrogen Energy, Vol. 41, No. 44, 2016, pp. 1999020022, doi: https://doi.org/10.1016/j.ijhydene.2016.08.135.    DOI
7 H. Cheon, G. Han, and J. Bae, "Study on the pressurized steam reforming of natural gas and biogas mixed cokes oven gas", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 111118, doi: https://doi.org/10.7316/KHNES.2019.30.2.111.   DOI
8 W. Choi and H. H. Song, "Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime trans portation: a South Korean case study", Appl. Energy, Vol. 230, 2018, pp. 135147, doi: https://doi.org/10.1016/j.apenergy.2018.08.092.   DOI
9 H. Lee and S. Lee, "Economic analysis on hydrogen pipeline infrastructure establishment scenarios: case study of South Korea", Energies, Vol. 15, No. 18, 2022, pp. 6824, doi: https://doi.org/10.3390/en15186824.   DOI
10 W. Lubitz and W. Tumas, "Hydrogen: an overview", Chem. Rev., Vol. 107, No. 10, 2007, pp. 39003903, doi: https://doi.org/10.1021/cr050200z.   DOI
11 S. Lee, T. Kim, G. Han, S. Kang, Y. S. Yoo, S. Y. Jeon, and J. Bae, "Comparative energetic studies on liquid organic hydrogen carrier: a net energy analysis", Renewable Sustainable Energy Rev., Vol. 150, 2021, pp. 111447, doi: https://doi.org/10.1016/j.rser.2021.111447.   DOI
12 S. Kang, J. Lee, G. Y. Cho, Y. Kim, S. Lee, S. W. Cha, and J. Bae, "Scalable fabrication process of thinfilm solid oxide fuel cells with an anode functional layer design and a sputtered electrolyte", Int. J. Hydrogen Energy, Vol. 45, No. 58, 2020, pp. 3398033992, doi: https://doi.org/10.1016/j.ijhydene.2020.09.033.   DOI
13 Y. H. Jang, S. Lee, H. Y. Shin, and J. Bae, "Development and evaluation of a 3cell stack of metalbased solid oxide fuel cells fabricated via a sinter-joining method for auxiliary power unit applications", Int. J. Hydrogen Energy, Vol. 43, No. 33, 2018, pp. 1621516229, doi: https://doi.org/10.1016/j.ijhydene.2018.06.141.   DOI
14 E. Shoko, B. McLellan, A. L. Dicks, and J. C. Diniz Da Costa, "Hydrogen from coal: production and utilisation technologies", Int. J. Coal Geol., Vol. 65, No. 34, 2006, pp. 213222, doi: https://doi.org/10.1016/j.coal.2005.05.004.   DOI
15 S. Lee, Y. H. Jang, H. Y. Shin, K. Lee, M. Bae, J. Kang, and J. Bae, "Reliable sealing design of metalbased solid oxide fuel cell stacks for transportation applications", Int. J. Hydrogen Energy, Vol. 44, No. 57, 2019, pp. 3028030292, doi: https://doi.org/10.1016/j.ijhydene.2019.09.087.   DOI
16 H. Kim, Y. Kim, and J. Song, "A experiment of combustion behavior of biomass fuels", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp. 503511, doi: https://doi.org/10.7316/KHNES.2018.29.5.503.   DOI
17 M. K. Karmakar and A. B. Datta, "Generation of hydrogen rich gas through fluidized bed gasification of biomass", Bioresour. Technol., Vol. 102, No. 2, 2011, pp. 19071913, doi: https://doi.org/10.1016/j.biortech.2010.08.015.   DOI
18 H. Alidrisi and A. Demirbas, "Enhanced electricity generation using biomass materials", Energy Sources Part A: Recovery Util. Environ. Eff., Vol. 38, No. 10, 2016, pp. 14191427, doi: https://doi.org/10.1080/15567036.2014.948647.   DOI
19 V. Kirubakaran, V. Sivaramakrishnan, R. Nalini, T. Sekar, M. Premalatha, and P. Subramanian, "A review on gasification of biomass", Renewable Sustainable Energy Rev., Vol. 13, No. 1, 2009, pp. 179186, doi: https://doi.org/10.1016/j.rser.2007.07.001.   DOI
20 G. Oh, J. Y. Jang, H. W. Ra, M. W. Seo, T. Y. Mun, J. G. Lee, and S. J. Yoon, "Gasification of coal and torrefied biomass mixture", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 2, 2017, pp. 190199, doi: https://doi.org/10.7316/KHNES.2017.28.2.190.   DOI
21 C. S. Prasad, K. N. Maiti, and R. Venugopal, "Effect of rice husk ash in white-ware compositions", Ceram. Int., Vol. 27, No. 6, 2001, pp. 629635, doi: https://doi.org/10.1016/S02728842(01)000104.   DOI
22 Y. J. Seong, and M. T. O, "Characterization of fibers originated from rice husks for replacing wood fiber", Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference, 2010, pp. 391397. Retrieved from https://koreascience.kr/article/CFKO201024438480380.page.
23 S. Lee, K. Lee, Y. Shin, Y. Kim, G. Lee, and J. Ahn, "Feasibility study on biomass (rice husk) power plant project in Vietnam", New Renew. Energy, Vol. 11, No. 1, 2015, pp. 1219, doi: https://doi.org/10.7849/ksnre.2015.03.1.012.   DOI