DOI QR코드

DOI QR Code

A Preliminary Study on Simulating the Hydrogen Production Process through Biomass Gasification Using Rice Husks from Korea

한국 왕겨 바이오매스의 가스화를 통한 수소 생산 공정모사 예비 연구

  • JIHYUN, SON (Department of Climate and Energy Systems Engineering, Ewha Womans University) ;
  • MIRAE, YU (Department of Climate and Energy Systems Engineering, Ewha Womans University) ;
  • MYUNGJI, KIM (Department of Climate and Energy Systems Engineering, Ewha Womans University) ;
  • SANGHUN, LEE (Department of Climate and Energy Systems Engineering, Ewha Womans University)
  • 손지현 (이화여자대학교 엘텍공과대학 기후.에너지시스템공학전공) ;
  • 유미래 (이화여자대학교 엘텍공과대학 기후.에너지시스템공학전공) ;
  • 김명지 (이화여자대학교 엘텍공과대학 기후.에너지시스템공학전공) ;
  • 이상훈 (이화여자대학교 엘텍공과대학 기후.에너지시스템공학전공)
  • Received : 2022.09.03
  • Accepted : 2022.10.21
  • Published : 2022.12.30

Abstract

Recently, hydrogen production is attracting attention. In this study, a process simulation was conducted on the gasification reaction to produce hydrogen using rice husks, which are produced as by-products of rice. For this purpose, Chuchung, Odae, and Dongjin rice, which are rice varieties produced in Korea, were compared with the literature. The Korean rice contained more hydrogen and less oxygen compared to the literature. As a result of the simulation, large amounts of H2 and CH4 and small amounts of CO2 and CO were produced accordingly. The conditions to maximize hydrogen production were a gasification reaction temperature of 700℃ and an Steam-to-Biomass (S/B) ratio of 0.4-0.6. However, because the S/B ratio is related to the gasification catalyst degradation, the model needs to be improved through additional experiments in the future. This study showed the possibility of hydrogen production using Korean rice husks, which had not been reported.

Keywords

Acknowledgement

이 연구는 2022학년도 이화여자대학교 교내연구비 지원에 의한 연구입니다. 이 논문은 정부(기상청)의 재원으로 한국기상산업기술원의 기상기후데이터 융합분석 특성화대학원 사업의 지원을 받아 수행되었습니다.

References

  1. H. Cheon, G. Han, and J. Bae, "Study on the pressurized steam reforming of natural gas and biogas mixed cokes oven gas", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 111118, doi: https://doi.org/10.7316/KHNES.2019.30.2.111.
  2. W. Choi and H. H. Song, "Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime trans portation: a South Korean case study", Appl. Energy, Vol. 230, 2018, pp. 135147, doi: https://doi.org/10.1016/j.apenergy.2018.08.092.
  3. W. Lubitz and W. Tumas, "Hydrogen: an overview", Chem. Rev., Vol. 107, No. 10, 2007, pp. 39003903, doi: https://doi.org/10.1021/cr050200z.
  4. H. Lee and S. Lee, "Economic analysis on hydrogen pipeline infrastructure establishment scenarios: case study of South Korea", Energies, Vol. 15, No. 18, 2022, pp. 6824, doi: https://doi.org/10.3390/en15186824.
  5. S. Lee, T. Kim, G. Han, S. Kang, Y. S. Yoo, S. Y. Jeon, and J. Bae, "Comparative energetic studies on liquid organic hydrogen carrier: a net energy analysis", Renewable Sustainable Energy Rev., Vol. 150, 2021, pp. 111447, doi: https://doi.org/10.1016/j.rser.2021.111447.
  6. S. Kang, J. Lee, G. Y. Cho, Y. Kim, S. Lee, S. W. Cha, and J. Bae, "Scalable fabrication process of thinfilm solid oxide fuel cells with an anode functional layer design and a sputtered electrolyte", Int. J. Hydrogen Energy, Vol. 45, No. 58, 2020, pp. 3398033992, doi: https://doi.org/10.1016/j.ijhydene.2020.09.033.
  7. Y. H. Jang, S. Lee, H. Y. Shin, and J. Bae, "Development and evaluation of a 3cell stack of metalbased solid oxide fuel cells fabricated via a sinter-joining method for auxiliary power unit applications", Int. J. Hydrogen Energy, Vol. 43, No. 33, 2018, pp. 1621516229, doi: https://doi.org/10.1016/j.ijhydene.2018.06.141.
  8. E. Shoko, B. McLellan, A. L. Dicks, and J. C. Diniz Da Costa, "Hydrogen from coal: production and utilisation technologies", Int. J. Coal Geol., Vol. 65, No. 34, 2006, pp. 213222, doi: https://doi.org/10.1016/j.coal.2005.05.004.
  9. S. Lee, Y. H. Jang, H. Y. Shin, K. Lee, M. Bae, J. Kang, and J. Bae, "Reliable sealing design of metalbased solid oxide fuel cell stacks for transportation applications", Int. J. Hydrogen Energy, Vol. 44, No. 57, 2019, pp. 3028030292, doi: https://doi.org/10.1016/j.ijhydene.2019.09.087.
  10. M. K. Karmakar and A. B. Datta, "Generation of hydrogen rich gas through fluidized bed gasification of biomass", Bioresour. Technol., Vol. 102, No. 2, 2011, pp. 19071913, doi: https://doi.org/10.1016/j.biortech.2010.08.015.
  11. H. Alidrisi and A. Demirbas, "Enhanced electricity generation using biomass materials", Energy Sources Part A: Recovery Util. Environ. Eff., Vol. 38, No. 10, 2016, pp. 14191427, doi: https://doi.org/10.1080/15567036.2014.948647.
  12. V. Kirubakaran, V. Sivaramakrishnan, R. Nalini, T. Sekar, M. Premalatha, and P. Subramanian, "A review on gasification of biomass", Renewable Sustainable Energy Rev., Vol. 13, No. 1, 2009, pp. 179186, doi: https://doi.org/10.1016/j.rser.2007.07.001.
  13. H. Kim, Y. Kim, and J. Song, "A experiment of combustion behavior of biomass fuels", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp. 503511, doi: https://doi.org/10.7316/KHNES.2018.29.5.503.
  14. G. Oh, J. Y. Jang, H. W. Ra, M. W. Seo, T. Y. Mun, J. G. Lee, and S. J. Yoon, "Gasification of coal and torrefied biomass mixture", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 2, 2017, pp. 190199, doi: https://doi.org/10.7316/KHNES.2017.28.2.190.
  15. C. S. Prasad, K. N. Maiti, and R. Venugopal, "Effect of rice husk ash in white-ware compositions", Ceram. Int., Vol. 27, No. 6, 2001, pp. 629635, doi: https://doi.org/10.1016/S02728842(01)000104.
  16. Y. J. Seong, and M. T. O, "Characterization of fibers originated from rice husks for replacing wood fiber", Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference, 2010, pp. 391397. Retrieved from https://koreascience.kr/article/CFKO201024438480380.page.
  17. S. Lee, K. Lee, Y. Shin, Y. Kim, G. Lee, and J. Ahn, "Feasibility study on biomass (rice husk) power plant project in Vietnam", New Renew. Energy, Vol. 11, No. 1, 2015, pp. 1219, doi: https://doi.org/10.7849/ksnre.2015.03.1.012.
  18. W. J. Cho, Y. G. Mo, T. Y. Song, Y. S. Baek, and S. S. Kim, "Synthesis gas production from gasification of woody biomass", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 6, 2010, pp. 587594. Retrieved from https://koreascience.kr/article/JAKO201019240638768.page. 1019240638768.page
  19. M. A. Babatabar and M. Saidi, "Hydrogen production via integrated configuration of steam gasification process of biomass and watergas shift reaction: process simulation and optimization", Int. J. Energy Res., Vol. 45, No. 13, 2021, pp. 1937819394, doi: https://doi.org/10.1002/er.7087.
  20. S. J. Park, M. H. Kim, and H. M. Shin, "Chemical compositions and thermal characteristics of rice husk and rice husk ash in Korea", J. Biosyst. Eng., Vol. 30, No. 4, 2005, pp. 235241, doi: https://doi.org/10.5307/JBE.2005.30.4.235.
  21. F. M. Alptekin and M. S. Celiktas, "Review on catalytic biomass gasification for hydrogen production as a sustainable energy form and social, technological, economic, environmental, and political analysis of catalysts", ACS Omega, Vol. 7, No. 29, 2022, pp. 2491824941, doi: https://doi.org/10.1021/acsomega.2c01538.
  22. E. Balu, U. Lee, and J. N. Chung, "High temperature steam gasification of woody biomass - a combined experimental and mathematical modeling approach", Int. J. Hydrogen Energy, Vol. 40, No. 41, 2015, pp. 1410414115, doi: https://doi.org/10.1016/j.ijhydene.2015.08.085.
  23. J. Bae, S. Lee, S. Kim, J. Oh, S. Choi, M. Bae, I. Kang, and S. P. Katikaneni, "Liquid fuel processing for hydrogen production: a review", Int. J. Hydrogen Energy, Vol. 41, No. 44, 2016, pp. 1999020022, doi: https://doi.org/10.1016/j.ijhydene.2016.08.135.