Browse > Article
http://dx.doi.org/10.5658/WOOD.2013.41.6.497

Optimal Condition for Torrefaction of Eucalyptus by Response Surface Methodology  

Kim, Young-Hun (Department of Forest Products and Technology, Chonnam National University)
Na, Byeong-Il (Department of Forest Products and Technology, Chonnam National University)
Lee, Soo-Min (Division of Wood Chemistry & Microbiology, Department of Forest Products, Korea Forest Research Institute)
Lee, Hyoung-Woo (Department of Forest Products and Technology, Chonnam National University)
Lee, Jae-Won (Department of Forest Products and Technology, Chonnam National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.41, no.6, 2013 , pp. 497-506 More about this Journal
Abstract
The optimal condition for the torrefaction of eucalyptus (Eucalyptus globulus) was investigated by response surface methodology. The carbon content in the torrefied biomass increased with the severity factor (SF), while hydrogen and oxygen contents decreased. The calorific value of torrefied biomass ranged from 20.23 to 21.29 MJ/kg, depending on the torrefaction conditions. This implied that the energy contained in the torrefied biomass increased by 1.6 to 6.9%, when compared with that of the untreated biomass. The weight loss of biomass increased as the SF increased. The Code level of reaction temperature had the highest impact on the energy yield of torrefied biomass, while the effect of Code level of reaction time was considerably low. The highest energy yield was obtained at low SF.
Keywords
torrefaction; eucalyptus; response surface methodology; energy yield;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Son, Y. M., H. Kim, H. Y. Lee, C. M. Kim, C. S. Kim, J. W. Kim, R. W. Joo, and K. H. Lee. 2010. Stand Yield and Commercial Timber Volume of Eucalyptus Pellita and Acacia Mangium plantions in Indonesia. Journal of Korean Forest Society 99(1): 9-15.
2 Lee, Y. K., D. K. Lee, S. Y. Woo, P. S. Park, Y. H. Jang, and E. R. G. Abraham. 2006. Effect of Acacia plantations on net photosynthesis, tree species composition, soil enzyme activities, and microclimate on Mt. Makiling. Photosynthetica 44(2): 299-308.   DOI   ScienceOn
3 Auro, C. A., J. L. Joe, J. S. Peter, S. A. Marcelo, F. Sebastiao, M. B. Simone, and L. B. Fernando. Needs and opportunities for using a processbased productivity model as a practical tool in Eucalyptus plantations Original Research Article. Forest Ecology and Management. Volume 193. Issues 1-2. 17 May 2004. pp. 167-177.   DOI   ScienceOn
4 Simes, H. C., C. C. Hassler, and T. H. Bean. 1988. Wood densification, West Virginia Uni. Extension Service. Publication No. 838.
5 Bourgeois, J., M. C. Bartholin, and R. Guyonnet. 1989. Thermal treatment of wood; analysis of the obtained product. Wood Science and Technology 23(4): 303-310.
6 Lu, K. M., W. J. Lee, W. H. Chen, S. H. Liu, and T. C. Lin. 2012. Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresource Technology 123: 98-105.   DOI   ScienceOn
7 Lee, J. W., Y. H. Kim, S. M. Lee, and H. W. Lee. 2012. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresource Technology 116: 471-476.   DOI   ScienceOn
8 Jaap, K. and V. V. L. Sjaak. 2008. The Handbook of biomass combustion and co-firing. Earthscan Publications Ltd.
9 Shang, L., J. Ahrenfeldt, J. K. Holm, A. R. Sanadi, S. Barsberg, and T. Thomsen. 2012. Changes of chemical and mechanical behavior of torrefied wheat straw. Biomass Bioenergy 40: 63-70.   DOI   ScienceOn
10 Phanphanich, M. and S. Mani. 2011. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technology. 102(2): 1246-1253.   DOI   ScienceOn
11 Pimchuai, A., A. Dutta, and P. Basu. 2010. Torrefaction of Agriculture Residue To Enhance Combustible Properties. Energy & Fuels 24(9): 4638-4645.   DOI   ScienceOn
12 Prins, M. J., K. J. Ptasinski, and F. J. J. G. Janssen. 2006. Torrefaction of wood: Part 1. Weight loss kinetics. Journal of Analytical and Applied Pyrolysis 77(1): 28-34.   DOI   ScienceOn
13 Prins, M. J., K. J. Ptasinski, and F. J. J. G. Janssen. 2006. Torrefaction of wood: Part 2. Analysis of products. Journal of Analytical and Applied Pyrolysis 77(1): 35-40.   DOI   ScienceOn
14 황병호. 1998.0 목질바이오매스. 선진문화사. pp. 11-12.
15 Jenkins, B. M., L. L. Baxter, T. R. Miles, and T. R. Miles. 1998. Combustion properties of biomass. Fuel Processing Technology 54: 17-46.   DOI   ScienceOn
16 Unsal, O., Z. Candan, U. Buyuksari, S. Korkut, Y. S. Chang, and H. M. Yeo. 2011. Effect of Thermal Compression Treatment on the Surface Hardness, Vertical Density Propile and Thickness Swelling of Eucalyptus Wood Boards by Hot-pressing. Mokchae Konghak 39(2): 148-166.   과학기술학회마을   DOI   ScienceOn
17 Bergman, P. C. A., A. R. Boersma, R. W. R. Zwart, and J. H. A. Kiel. 2005. Torrefaction for biomass co-firing in existing coal-fired power stations. Energy research Centre of the Netherlands.
18 Ibrahim, R. H. H., L. I. Darvell, J. M. Jones, and A. Williams. 2012. Physicochemical characterisation of torrefied biomass. Journal of Analytical and Applied Pyrolysis.
19 Lloyd, T. A. and C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology 96(18): 1967-1977.   DOI   ScienceOn
20 TAPPI test method. 1992. TAPPI Press. Atlanta. UAS.
21 Repellin, V., A. Govin, M. Rolland, and R. Guyonnet. 2010. Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. Biomass Bioenergy 34: 602-609.   DOI   ScienceOn
22 Chen, W. H. and P. C. Kuo. 2011. Torrefaction and co-torrefaction characterization of hemicelluloses, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36: 803-811.   DOI   ScienceOn