• Title/Summary/Keyword: Reaction Oxygen

Search Result 1,820, Processing Time 0.054 seconds

The investigations for feasible catalysts that are doped by electrochemical methods onto anodic TiO2 nanotubes and its applications (전기화학적 방법으로 TiO2 나노튜브에 도핑 가능한 촉매제와 그 응용에 관한 연구)

  • Yu, Hyeon-Seok;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.99.1-99.1
    • /
    • 2017
  • $TiO_2$는 기계적, 화학적 안정성이 높아 가혹한 화학적 환경 또는 고온 운전 조건에서 훌륭한 내구성을 보여주어 산업적으로 일찍이 널리 이용되어 왔다. 예를 들어, 염소발생 (chlorine evolution reaction) 또는 산소발생반응은 (oxygen evolution reaction) 염소 또는 산소 라디칼에 전극이 지속적으로 노출되기에 강한 내부식성을 지닌 전극재가 요구되었고, 그 결과 $TiO_2$를 골조로 한 불용성전극 (dimensionally stable anode)이 개발되어 이용되고 있다. 그러나, $TiO_2$는 절연성이 높은 금속 산화물 재료이기 때문에 넓은 표면적 획득 및 촉매제 사용을 통해 소재의 단점을 극복해야만 한다. 넓은 반응 표면적 획득의 한 방법으로써 전기화학적 양극산화 (electrochemical anodization)를 통한 $TiO_2$ 나노튜브 제조법은 경제적이면서도 구조 제어도 간편한 방법이다. $TiO_2$ 나노튜브는 100nm 전후의 기공 크기를 가짐과 동시에 매우 높은 종횡비를 지니고 있어 넓은 반응 표면적 획득에 특히 유리하다. 그러나, 이 높은 종횡비는 촉매 도입을 어렵게 하는 저해요소가 되기도 한다. 이러한 문제를 해결하기 위하여 다양한 방법들이 연구되었으나 대부분이 번거롭거나 비싼 후단공정을 필요로 한다. 본 연구에서는 $TiO_2$ 나노튜브에 촉매를 도핑하기 위한 간단한 전기화학적 방법으로, 단일공정 양극산화법 (single-step anodization)과 전압충격법 (potential shock), 그리고 저전압충격법 (under potential shock)을 연구하였으며 이에 적용 가능한 촉매제의 종류를 소개한다. 또한, 촉매의 성질에 따른 응용분야와 그 성능평가 결과를 제시한다.

  • PDF

Pore Characteristics of Stainless Steel Slag AOD Blended Cement Pastes by Carbonation Curing (스테인리스 스틸 슬래그 AOD 혼입 시멘트 페이스트의 탄산화 양생에 의한 공극특성)

  • Hwang, Chul-Sung;Park, Kyoung Tae;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • In this study, the mechanical and micro-structural change of cement pastes incorporating Stainless-Steel Slag Argon Oxygen Decarburization Slag (STS-A) containing ${\gamma}-C_2S$ as a carbon capture materials were investigated with carbonation curing condition. ${\gamma}-C_2S$ is non-hydraulic, therefore does not react with water. But ${\gamma}-C_2S$ has a reactivity under carbonation curing condition with water. The reaction products fill up the pore in pastes. The microstructure of STS-A blended cement pastes could be densified by this reaction. The pore structure of cement pastes incorporating STS-A was measured using mercury intrusion porosimetry (MIP) after carbonation curing ($CO_2$ concentration is about 5%). Also the fractal characteristics were investigated for the effect of carbonation curing on the micro-structural change of paste specimens. From the results, the compressive strength of carbonated specimens incorporating STS-A increased and pore-structure of carbonated paste is more complicated.

Electricity Generation by Microbial Fuel Cell Using Microorganisms as Catalyst in Cathode

  • Jang, Jae Kyung;Kan, Jinjun;Bretschger, Orianna;Gorby, Yuri A.;Hsu, Lewis;Kim, Byung Hong;Nealson, Kenneth H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1765-1773
    • /
    • 2013
  • The cathode reaction is one of the most seriously limiting factors in a microbial fuel cell (MFC). The critical dissolved oxygen (DO) concentration of a platinum-loaded graphite electrode was reported as 2.2 mg/l, about 10-fold higher than an aerobic bacterium. A series of MFCs were run with the cathode compartment inoculated with activated sludge (biotic) or not (abiotic) on platinum-loaded or bare graphite electrodes. At the beginning of the operation, the current values from MFCs with a biocathode and abiotic cathode were $2.3{\pm}0.1$ and $2.6{\pm}0.2mA$, respectively, at the air-saturated water supply in the cathode. The current from MFCs with an abiotic cathode did not change, but that of MFCs with a biotic cathode increased to 3.0 mA after 8 weeks. The coulomb efficiency was 59.6% in the MFCs with a biotic cathode, much higher than the value of 15.6% of the abiotic cathode. When the DO supply was reduced, the current from MFCs with an abiotic cathode decreased more sharply than in those with a biotic cathode. When the respiratory inhibitor azide was added to the catholyte, the current decreased in MFCs with a biotic cathode but did not change in MFCs with an abiotic cathode. The power density was higher in MFCs with a biotic cathode ($430W/m^3$ cathode compartment) than the abiotic cathode MFC ($257W/m^3$ cathode compartment). Electron microscopic observation revealed nanowire structures in biofilms that developed on both the anode and on the biocathode. These results show that an electron-consuming bacterial consortium can be used as a cathode catalyst to improve the cathode reaction.

Enhanced photocatalytic Cr(VI) reduction using immobilized nanotubular TiO2 on Ti substrates and flat type photoreactor (티타늄 금속지지체에 고정화된 나노튜브 광촉매와 평판형 광반응기를 이용한 Cr(VI) 환원처리 효율 향상 연구)

  • Kim, Youngji;Joo, Hyunku;Yoon, Jaekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • In this study, flat-type photocatalytic reaction system is applied to reduce toxic hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in aqueous solution under UV irradiation. To overcome the limitation of conventional photocatalysis, a novel approach toward photocatalytic system for reduction of hexavalent chromium including nanotubular $TiO_2$ (NTT) on two kinds of titanium substrates (foil and mesh) were established. In addition, modified Ti substrates were prepared by bending treatment to increase reaction efficiency of Cr(VI) in the flat-type photocatalytic reactor. For the fabrication of NTT on Ti substrates, Ti foil and mesh was anodized with mixed electrolytes ($NH_4F-H_2O-C_2H_6O_2$) and then annealed in ambient oxygen. The prepared NTT arrays were uniformly grown on two Ti substrates and surface property measurements were performed through SEM and XRD. Hydraulic retention time(HRT) and substrate type were significantly affected the Cr(VI) reduction. Hence, the photocatalytic Cr(VI) reduction was observed to be highest up to 95% at bended(modified) Ti mesh and lowest HRT. Especially, Ti mesh was more effective as NTT substrate in this research.

The effect of moisture on SCR reaction of NMO (Natural Manganese Ore) (천연망간광석 SCR 반응에서 수분의 영향)

  • Kim, Sungsu;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.350-355
    • /
    • 2007
  • The effect of moisture in flue gas on SCR reaction of NMO (Natural Manganese Ore) was studied. The experiments were performed over NMO with NO, $NH_3$ at independent condition or simultaneous condition. $NH_3$ can be oxidized at low temperature by the lattice oxygen in NMO catalyst. The concentration of NO and $NO_2$ by $NH_3$ oxidation with moisture is higher above $300^{\circ}C$ than that without moisture. Moisture would competitively adsorb with NO and $NH_3$ on NMO catalyst. It caused poor NOx conversion to compete against $H_2O$. Besides the NOx conversion efficiency was reduced at below $250^{\circ}C$ because of the dipped $H_2O$ competitively adsorbed $NH_3$. The reactivity of NMO varied with the calcination temperature and the optimum calcination temperature was $400^{\circ}C$ regardless $H_2O$.

Experimental and Numerical Study of the Thermal Decomposition of an Epoxy-based Intumescent Coating (실험과 계산을 통한 에폭시 계열 내화도료의 열분해에 관한 연구)

  • Kim, Yangkyun
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • This study investigates the characteristics of thermal decomposition of an epoxy-based intumescent paint using thermogravimetric analysis (TGA) and numerical simulation. A mathematical and numerical model is introduced to describe mass loss profiles of the epoxy-based intumescent coating induced by the thermal decomposition process. The decomposition scheme covers a range of complexity by employing simplified 4-step sequential reactions to describe the simultaneous thermal decomposition processes. The reaction rates are expressed by the Arrhenius law, and reaction parameters are optimized to fit the degradation behavior seen during thermogravimetric (TG) experiments. The experimental results show a major 2-step degradation under nitrogen and a 3-step degradation in an air environment. The experiment also shows that oxygen takes part in the stabilization of the intumescent coating between 200 and $500^{\circ}C$. The simulation results show that the proposed model effectively predicts the experimental mass loss as a function of time except for temperatures above $800^{\circ}C$, which were intentionally not included in the model. The maximum error in the simulation was less than 3%.

Investigation and Theoretical Analysis of a Fire Accident Caused by Smoldering Combustion (Smoldering 연소로 인한 화재사고 조사보고 소개 및 이론적 해석)

  • 김연승;변영철;황정호
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.3-17
    • /
    • 1999
  • Smoldering is a non-flaming combustion mode, characterized by thermal degradation and c charring of the virgin material, evolution of smoke and emission of visible glow. A big fire may @ occur even in a confined environment having a limited amount of oxygen, due to smoldering c combustion through a porous solid material. This paper presents a theoretical analysis on the effect of smoldering combustion on fire occurrence based on a report about fire investigation of a real f fire accident. It is assumed that the propagation of the smolder wave is one-dimensional, d downward, opposing an upward forced flow and steady in a frame of reference moving with the s smolder wave. Smoldering combustion is modeled by a one-step reaction mechanism, without c considering pyrolysis. It is found that dominant parameters controlling smoldering combustion i include mass flux of oxidizer entering the reaction zone and void fraction of solid fuel. It is also found that the mechanism of transition to flaming is critically influenced by these two parameters.

  • PDF

A Study on the Reaction Characteristics of the NH3 Oxidation over W/TiO2 (W/TiO2 촉매의 NH3 단독 산화 반응 특성 연구)

  • Kim, Geo Jong;Lee, Sang Moon;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.645-649
    • /
    • 2013
  • In this study, we investigated the $NH_3$ oxidation reaction characteristic over $W/TiO_2$ catalyst in order to control $NH_3$ generated from a thermoelectric power plant or incinerator. As a result, it was found that the optimal content of tungsten in $W/TiO_2$ catalyst is 10 wt% and $NH_3$ removal efficiency decreased due to decreasing specific surface areas of catalyst with increasing tungsten contents. When $NH_3$ was injected more than 420 ppm, $NH_3$ conversion decreased at the middle temperature range. In addition, $NH_3$ conversion decreased due to the competitive adsorption of moisture and with increasing oxygen concentration, the $NH_3$ conversion increased while the $N_2$ selectivity decreased.

Catalytic Gasification of Mandarin Waste Residue using Ni/CeO2-ZrO2

  • Kim, Seong-Soo;Kim, Jeong Wook;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Ryu, Changkook;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3387-3390
    • /
    • 2013
  • Catalytic gasification of mandarin waste residue was carried out using direct and indirect catalyst-contact methods for the first time. In the indirect method, non-catalytic reaction in a reactor was followed by catalytic upgrading of vapor product in another reactor. Two different catalysts, $Ni/{\gamma}-Al_2O_3$ and $Ni/CeO_2-ZrO_2$, were employed. $CeO_2-ZrO_2$ support was prepared using hydrothermal synthesis in supercritical water. The catalysts were characterized by $H_2$-temperature programmed reduction and Brunauer-Emmett-Teller analyses. Under the condition of equivalent ratio (ER) = 0, the indirect catalyst-contact method led to a higher gas yield than the direct method. Under ER = 0.2, the yield of biogas obtained over $Ni/CeO_2-ZrO_2$ was higher than that obtained over $Ni/{\gamma}-Al_2O_3$. Also, the coke formation of $Ni/CeO_2-ZrO_2$ was lower than that of $Ni/{\gamma}-Al_2O_3$. Such results were attributed to the higher reducibility and better lattice oxygen mobility of $Ni/CeO_2-ZrO_2$, which were advantageous for partial oxidation reaction.

Theoretical Studies on the Cationic Polymerization Mechanism of Cyclic Acetals (산 촉매하의 Cyclic Acetals 공중합반응에 관한 분자궤도론적 연구)

  • Young-Gu Cheun;Jae-Kyung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 1992
  • The cationic polymerization of cyclic acetals are investigated theoretically using the semiempirical MINDO/3, MNDO, and $AM_1$, methods. The nucleophilicity and basicity of cyclic acetals can be explained by the negative charge on oxygen atom of cyclic acetals. The reactivity of propagation in the polymerization of cyclic acetals can be represented by the positive charge on $C_2$ atom and the low LUMO energy of active species of cyclic acetals. The reactivity of 2-buthyl-1,3-dioxepane(2-Bu-DOP) of cyclic oxonium and opening carbenium ion form is expected computational stability of the oxonium ion by 5${\sim}$7kcal/mole favoring the carbenium ion. Owing to the rapid equilibrium of these cation forms and the reaction coordinate based on calculation that the reaction coordinate based on calculation that the chain growth $S_N1$ mechanism will be at least as fast as that for $S_N2$ mechanism.

  • PDF