Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.11.3387

Catalytic Gasification of Mandarin Waste Residue using Ni/CeO2-ZrO2  

Kim, Seong-Soo (Korea Institute of Energy Research)
Kim, Jeong Wook (Graduate School of Energy and Environmental System Engineering, University of Seoul)
Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University)
Jung, Sang-Chul (Department of Environmental Engineering, Sunchon National University)
Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
Ryu, Changkook (School of Mechanical Engineering, Sungkyunkwan University)
Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
Publication Information
Abstract
Catalytic gasification of mandarin waste residue was carried out using direct and indirect catalyst-contact methods for the first time. In the indirect method, non-catalytic reaction in a reactor was followed by catalytic upgrading of vapor product in another reactor. Two different catalysts, $Ni/{\gamma}-Al_2O_3$ and $Ni/CeO_2-ZrO_2$, were employed. $CeO_2-ZrO_2$ support was prepared using hydrothermal synthesis in supercritical water. The catalysts were characterized by $H_2$-temperature programmed reduction and Brunauer-Emmett-Teller analyses. Under the condition of equivalent ratio (ER) = 0, the indirect catalyst-contact method led to a higher gas yield than the direct method. Under ER = 0.2, the yield of biogas obtained over $Ni/CeO_2-ZrO_2$ was higher than that obtained over $Ni/{\gamma}-Al_2O_3$. Also, the coke formation of $Ni/CeO_2-ZrO_2$ was lower than that of $Ni/{\gamma}-Al_2O_3$. Such results were attributed to the higher reducibility and better lattice oxygen mobility of $Ni/CeO_2-ZrO_2$, which were advantageous for partial oxidation reaction.
Keywords
Hydrogen; Waste mandarin residue; Catalytic gasification; $Ni/CeO_2-ZrO_2$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Xue, Q.; Liu, Y. J. Ind. Eng. Chem. 2012, 18, 1741.   DOI   ScienceOn
2 Kim, J. R.; Lee, K. Y.; Suh, M. J.; Ihm, S. K. Catal. Today 2012, 185, 25.   DOI   ScienceOn
3 Kim, J. W.; Lee, S. H.; Kim, S. S.; Park, S. H.; Jeon, J. K.; Park, Y. K. Korean J. Chem. Eng. 2011, 28, 1867.   DOI   ScienceOn
4 Kim, J. W.; Joo, S. H.; Seo, B.; Kim, S. S.; Shin, D. H.; Park, S. H.; Jeon, J. K.; Park, Y. K. J. Nanosci. Nanotechnol. 2013, 13, 2566.   DOI
5 Li, J.; Liu, J.; Liao, S.; Yan, R. Int. J. Hydrogen Energy 2010, 35, 7399.   DOI   ScienceOn
6 Zhou, C. H.; Xia, X.; Lin, C. X.; Tong, D. S.; Beltramini, J. Chem. Soc. Rev. 2011, 17, 549.
7 Eom, I. Y.; Kim, J. Y.; Lee, S. M.; Cho, T. S.; Choi, I. G.; Choi, J. W. J. Ind. Eng. Chem. 2012, 18, 2069.   DOI   ScienceOn
8 Bulushev, D. A.; Ross, J. R. H. Catal. Today 2011, 171, 1.   DOI   ScienceOn
9 Kim, J. Y.; Lee, S. M.; Lee, J. H. J. Ind. Eng. Chem. 2012, 18, 2147.   DOI   ScienceOn
10 Ko, C. H.; Park, S. H.; Jeon, J. K.; Suh, D. J.; Jeong, K. E.; Park, Y. K. Korean J. Chem. Eng. 2012, 29, 1657.   DOI   ScienceOn
11 Lasa, D.; Salaices, E.; Mazumder, J.; Lucky, R. Chem. Rev. 2011, 111, 5404.   DOI   ScienceOn
12 Xu, C.; Donald, J.; Byambajav, E.; Ohtsuka, Y. Fuel 2010, 89, 1784.   DOI   ScienceOn
13 Palma, C. F. Appl. Energy 2013, 111, 129.   DOI   ScienceOn
14 Shen, Y.; Yoshikawa, K. Renew. Sustain. Energy Rev. 2013, 21, 371.   DOI   ScienceOn
15 Lee, C. G.; Hur, H. Korean J. Chem. Eng. 2011, 28, 1539.   DOI   ScienceOn
16 Kang, S. W.; Kwak, Y. H.; Cheon, K. H.; Park, S. H.; Jeon, J. K.; Park, Y. K. Appl. Chem. Eng. 2011, 22, 429.
17 Park, I. H.; Park, Y. K.; Lee, Y. M.; Bae, W.; Kwak, Y. H.; Cheon, K. H.; Park, S. H. Appl. Chem. Eng. 2011, 22, 286.
18 Park, H. J.; Park, S. H.; Sohn, J. M.; Park, J.; Jeon, J. K.; Kim, S. S.; Park, Y. K. Bioresour. Technol. 2010, 101, S101.   DOI   ScienceOn