• 제목/요약/키워드: Reaction Conditions

검색결과 4,257건 처리시간 0.035초

동물성 유지를 원료로 한 바이오 디젤 제조 장치 개발 및 바이오 디젤의 반응조건 고찰 (Development of Biodiesel Production Equipment from Animal Fats and Consideration for Reaction Condition of Animal Biodiesel)

  • 김용훈;조영학
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.119-124
    • /
    • 2013
  • In this paper, we analysed fatty acid methyl ester contents in the biodiesel which is produced from the newly developed biodiesel production equipment. The lard oil was used as the raw material through various experimental conditions. Thirty one experiments were conducted, which were based on the experimental conditions that designed by central composite design method. The effects of four independent variables, including reaction temperature, reaction time, oil to methanol molar ratio, and catalytic amount, were investigated at five levels using central composite design (CCD). Fatty acid methyl ester content was chosen dependent variable. Although the results of analysis of the surface with an irregular surface geometry showed that the biodiesel was partially impure after the reaction due to the natural characteristics of the lard oil as the raw material, we could confirm the relationship between them from the facts that the production amount of fatty acid methyl ester changes according to reaction temperature, reaction time, oil to methanol molar ratio, and catalytic amount.

Preparation of Diacylglycerol from Lard by Enzymatic Glycerolysis and Its Compositional Characteristics

  • Diao, Xiaoqin;Guan, Haining;Kong, Baohua;Zhao, Xinxin
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.813-822
    • /
    • 2017
  • The aim of this study was to prepare diacylglycerol (DAG) by enzymatic glycerolysis of lard. The effects of reaction parameters such as lipase type, reaction temperature, enzyme amount, substrate molar ratio (lard/glycerol), reaction time, and magnetic stirring speed were investigated. Lipozyme RMIM was found to be a more active biocatalyst than Novozym 435, and the optimal reaction conditions were 14:100 (W/W) of enzyme to lard substrate ratio, 1:1 of lard to glycerol molar ratio, and 500 rpm magnetic stirring speed. The reaction mixture was first incubated at $65^{\circ}C$ for 2 h and then transferred to $45^{\circ}C$ for 8 h. At the optimum reaction conditions, the conversion rate of triacylglycerol (TAG) and the content of DAG in the reaction mixture reached 76.26% and 61.76%, respectively, and the DAG content in purified glycerolized lard was 82.03% by molecular distillation. The distribution of fatty acids and Fourier transform infrared spectra in glycerolized lard samples were similar to those in lard samples. The results revealed that enzymatic glycerolysis and molecular distillation can be used to prepare more highly purified DAG from lard.

Application of Taguchi Experimental Design for the Optimization of Effective Parameters on the Rapeseed Methyl Ester Production

  • Kim, Sun-Tae;Yim, Bong-Been;Park, Young-Taek
    • Environmental Engineering Research
    • /
    • 제15권3호
    • /
    • pp.129-134
    • /
    • 2010
  • The optimization of experimental parameters, such as catalyst type, catalyst concentration, molar ratio of alcohol to oil and reaction temperature, on the transesterification for the production of rapeseed methyl ester has been studied. The Taguchi approach (Taguchi method) was adopted as the experimental design methodology, which was adequate for understanding the effects of the control parameters and to optimize the experimental conditions from a limited number of experiments. The optimal experimental conditions obtained from this study were potassium hydroxide as the catalyst, at a concentration of 1.5 wt %, and a reaction temperature of $60^{\circ}C$. According to Taguchi method, the catalyst concentration played the most important role in the yield of rapeseed methyl ester. Finally, the yield of rapeseed methyl ester was improved to 96.7% with the by optimal conditions of the control parameters which were obtained by Taguchi method.

Canonical Sampling Method for Initial Conditions for Reactive Flux Calculations Using Nose-Hoover Chains

  • Lee, Song-Hi;Pak, Young-Shang
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.533-538
    • /
    • 2004
  • Canonical sampling method has been presented to generate the initial conditions for reactive flux studies of organic reactions in water. Velocity Verlet version of Nose-Hoover chain dynamics algorithm has been employed to sample the initial conditions according to canonical distribution. The unstable normal mode of a transition state has been introduced to define a dividing plane separating reactant and product regions in reaction processes. This method has been implemented and tested for the case iels-Alder reaction of methyl vinyl ketone (MVK) and cyclopentadiene (CPD) in water, providing a reliable tool for further reactive flux molecular dynamics studies in condensed media.

Highly Selective Synthesis of β-Amino Carbonyl Compounds over ZSM-5-SO3H under Solvent-free Conditions

  • Massah, Ahmad Reza;Kalbasi, Roozbeh Javad;Samah, Neda
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1703-1708
    • /
    • 2011
  • ZSM-5-$SO_3H$ efficiently catalyzed the one-pot three-component Mannich reaction of aldehydes, anilines, and ketones. ${\beta}$-Aminocarbonyl compounds were obtained in reasonable yields and excellent stereoselectivities when the reaction was carried out at room temperature under solvent-free conditions. Simple experimental conditions and product isolation procedure makes this protocol potential for the development of clean and environment-friendly strategy for the synthesis of ${\beta}$-amino-ketones. The catalyst was recovered and reused for subsequent runs.

수소 생산을 위한 수증기 개질기의 형상 변화와 작동 조건에 대한 수치해석 연구 (Numerical Study on Geometries and Operating Parameters of a Steam Reformer for Hydrogen Production)

  • 변강수;이재성;김호영
    • 한국연소학회지
    • /
    • 제16권3호
    • /
    • pp.1-11
    • /
    • 2011
  • The main objective of this paper is to investigate characteristic of steam reformer at various geometries and operating conditions. In this paper, the steam reforming is studied by a numerical method and three dimensional simulations were used for effective analytical study. User - Defined Function (UDF) was used to simultaneously calculate reforming and combustion reaction. And the numerical model is validated with experimental results at the same operating conditions. In order to understand the relationship between operating conditions such as gas hourly space velocity(GHSV), mass flow rate of combustor inlet, various numerical investigations are carries out for various geometries. Numerical results show that cylindrical geometry is more effective than rectangular geometry for heat transfer to reactors and reforming efficiency. As mass flow rate of combustor inlet increase, reaction occurs more faster and temperature increase with each geometry. On the other hand, reaction and hydrogen conversion decrease as mass flow rate of reactor decreases.

COMPUTATIONAL METHOD FOR SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION EQUATIONS WITH ROBIN BOUNDARY CONDITIONS

  • GELU, FASIKA WONDIMU;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.25-45
    • /
    • 2022
  • In this study, the non-standard finite difference method for the numerical solution of singularly perturbed parabolic reaction-diffusion subject to Robin boundary conditions has presented. To discretize temporal and spatial variables, we use the implicit Euler and non-standard finite difference method on a uniform mesh, respectively. We proved that the proposed scheme shows uniform convergence in time with first-order and in space with second-order irrespective of the perturbation parameter. We compute three numerical examples to confirm the theoretical findings.

1차원 BaTiO3 나노튜브 어레이의 압전발전성능에 수열합성 반응조건이 미치는 영향 (Effect of Hydrothermal Reaction Conditions on Piezoelectric Output Performance of One Dimensional BaTiO3 Nanotube Arrays)

  • 이재훈;현동열;허동훈;박귀일
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.127-133
    • /
    • 2021
  • One-dimensional (1D) piezoelectric nanostructures are attractive candidates for energy generation because of their excellent piezoelectric properties attributed to their high aspect ratios and large surface areas. Vertically grown BaTiO3 nanotube (NT) arrays on conducting substrates are intensively studied because they can be easily synthesized with excellent uniformity and anisotropic orientation. In this study, we demonstrate the synthesis of 1D BaTiO3 NT arrays on a conductive Ti substrate by electrochemical anodization and sequential hydrothermal reactions. Subsequently, we explore the effect of hydrothermal reaction conditions on the piezoelectric energy conversion efficiency of the BaTiO3 NT arrays. Vertically aligned TiO2 NT arrays, which act as the initial template, are converted into BaTiO3 NT arrays using hydrothermal reaction with various concentrations of the Ba source and reaction times. To validate the electrical output performance of the BaTiO3 NT arrays, we measure the electricity generated from each NT array packaged with a conductive metal foil and epoxy under mechanical pushings. The generated output voltage signals from the BaTiO3 NT arrays increase with increasing concentration of the Ba source and reaction time. These results provide a new strategy for fabricating advanced 1D piezoelectric nanostructures by demonstrating the correlation between hydrothermal reaction conditions and piezoelectric output performance.

다양한 액상 수위/부피 조건에서의 300kHz 초음파 캐비테이션 산화반응 분석 연구 (Sonochemical Oxidation Reactions in 300 kHz Sonoreactor for Various Liquid Height/Volume Conditions)

  • 이성은;손영규
    • 한국물환경학회지
    • /
    • 제38권5호
    • /
    • pp.211-219
    • /
    • 2022
  • In this study, the effect of liquid height/volume on sonochemical oxidation reactions was investigated in 300 kHz sonoreactors. The gas mixture of Ar/O2 (50:50) was applied in two modes including saturation and sparging, and zero-order reaction (KI dosimetry) and first-order reaction (Bisphenol A (BPA) degradation) were used to quantitatively analyze sonochemical oxidation reactions. For the zero-order reaction, the highest sonochemical oxidation activity was obtained for the liquid height of 5𝛌, and the lowest height for both the gas saturation and sparging conditions. In addition, the sparging did not enhance the sonochemical oxidation activity for all height conditions except for 50𝛌, where very low activity was obtained. It was found that in sonochemiluminescence (SCL) images the sonochemical active zone was formed adjacent to the liquid surface for the gas sparging condition due to the formation of the standing wave field while the active zone was formed adjacent to the transducer at the bottom due to the blockage of ultrasound. For the first-order reaction, the highest activity was also obtained at 5𝛌 and the comparison based on the reactant mass was not appropriate because the concentration of the reactant (BPA) decreased significantly as the reaction time elapsed. Consequently, it was revealed that the determination of optimal liquid height (ultrasound irradiation distance) based on the wavelength of the applied ultrasound frequency was very important for the optimal design of sonoreactors in terms of reaction efficiency and reactor size.

Reaction Flavoring에 의한 진주조개 (Pinctada fucata) 추출물의 풍미개선 (Enhancing the Flavor of Pearl Oyster (Pinctada fucata) Extract Using Reaction Flavoring)

  • 강정구;남기호;강진영;황석민;김정균;오광수
    • 한국수산과학회지
    • /
    • 제40권6호
    • /
    • pp.350-355
    • /
    • 2007
  • The optimal substrates and reaction flavoring conditions were examined to develop pearl oyster extract (POE) flavor using the Maillard reaction under a model system. The sugar for the Maillard reaction was glucose, and the amino acid was cysteine, with glycine as the reaction substrate. A three-dimensional response surface method was used to monitor the dynamic changes of the substrates during the Maillard reaction. To enhance the flavor of POE, a two-step enzymatic hydrolysate (Brix $20^{\circ}$) was reacted with the precursors (1:1, v/v). A 2:1:1 mixture of 0.4 M glucose:0.4 M glycine:0.4 M cysteine (v/v) was selected as a suitable reaction system for the reappearance of baked potato odor and boiled meat odor, and masking the shellfish odor. The two-step enzymatic hydrolysate and selected precursors were reacted in a high-pressure reactor to optimize the reaction parameters. The optimum conditions were 150 minutes at $120\;^{\circ}C$ and pH 7.0. The pH was the most critical factor for the response of the baked potato odor and masking the shellfish odor, while the reaction time affected the reappearance of the boiled meat odor.