Browse > Article
http://dx.doi.org/10.5851/kosfa.2017.37.6.813

Preparation of Diacylglycerol from Lard by Enzymatic Glycerolysis and Its Compositional Characteristics  

Diao, Xiaoqin (College of Food and Pharmaceutical Engineering, Suihua University)
Guan, Haining (College of Food and Pharmaceutical Engineering, Suihua University)
Kong, Baohua (College of Food Science, Northeast Agricultural University)
Zhao, Xinxin (College of Food Science, Northeast Agricultural University)
Publication Information
Food Science of Animal Resources / v.37, no.6, 2017 , pp. 813-822 More about this Journal
Abstract
The aim of this study was to prepare diacylglycerol (DAG) by enzymatic glycerolysis of lard. The effects of reaction parameters such as lipase type, reaction temperature, enzyme amount, substrate molar ratio (lard/glycerol), reaction time, and magnetic stirring speed were investigated. Lipozyme RMIM was found to be a more active biocatalyst than Novozym 435, and the optimal reaction conditions were 14:100 (W/W) of enzyme to lard substrate ratio, 1:1 of lard to glycerol molar ratio, and 500 rpm magnetic stirring speed. The reaction mixture was first incubated at $65^{\circ}C$ for 2 h and then transferred to $45^{\circ}C$ for 8 h. At the optimum reaction conditions, the conversion rate of triacylglycerol (TAG) and the content of DAG in the reaction mixture reached 76.26% and 61.76%, respectively, and the DAG content in purified glycerolized lard was 82.03% by molecular distillation. The distribution of fatty acids and Fourier transform infrared spectra in glycerolized lard samples were similar to those in lard samples. The results revealed that enzymatic glycerolysis and molecular distillation can be used to prepare more highly purified DAG from lard.
Keywords
lard; glycerolysis; diacylglycerol; compositional characteristics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Noureddini, H., Harkey, D. W., and Gutsman, M. R. (2004) A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, 203-207.   DOI
2 Pawongrat, R., Xu, X. B., and H-Kittikun, A. (2007) Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chem.104, 251-258.   DOI
3 Rosu, R., Yasui, M., Iwasaki, Y., and Yamane, T. (1999) Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent free system. J. Am. Oil Chem. Soc. 76, 839-843.   DOI
4 Lo, S. K., Baharin, B. S., Tan, C. P., and Lai, O. M. (2004) Enzyme-catalyzed production and chemical composition of diacylglycerols from corn oil deodorizer distillate. Food Biotechnol. 18, 265-278.   DOI
5 Lo, S. K., Tan, C. P., Long, K., Yusoff, M. S. A., and Lai, O. M. (2008) Diacylglycerol oil-properties, processes and products: A review. Food Bioprocess Tech. 1, 223-233.   DOI
6 Maki, K. C., Davidson, M. H., Tsushima, R., Matsuo, N., Tokimitsu, I., Umporowicz, D. M., Dicklin, M. R., Foster, G. S., Ingram, K. A., Anderson, B. D., Frost, S. D., and Bell, M. (2002) Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am. J. Clin. Nutr. 76, 1230-1236.   DOI
7 Meng, X. H., Zou, D. Y., Shi, Z. P., Duan, Z. Y., and Mao, Z. G. (2004) Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids 39, 37-41.   DOI
8 Miklos, R., Mora-Gallego, H., Larsen, F. H., Serra, X., Cheong, L.-Z., Xu, X., Arnau, J., and Lametsch, R. (2014) Influence of lipid type on water and fat mobility in fermented sausages studied by low-field NMR. Meat Sci. 96, 617-622.   DOI
9 Miklos, R., Xu, X. B., and Lametsch, R. (2011) Application of pork fat diacylglycerols in meat emulsions. Meat Sci. 87, 202-205.   DOI
10 Miklos, R., Zhang, H., Lametsch, R., and Xu, X. (2013) Physicochemical properties of lard-based diacylglycerols in blends with lard. Food Chem.138, 608-614.   DOI
11 Mora-Gallego, H., Serra, X., Guàrdia, M. D., Miklos, R., Lametsch, R., and Arnau, J. (2013) Effect of the type of fat on the physicochemical, instrumental and sensory characteristics of reduced fat non-acid fermented sausages. Meat Sci. 93, 668-674.   DOI
12 Taguchi, H., Watanabe, H., Onizawa, K., Nagao, T., Gotoh, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J. Am. Coll. Nutr. 19, 789-796.   DOI
13 Singh, A. K. and Mukhopadhyay, M. (2012) Olive oil glycerolysis with the immobilized lipase Candida Antarctica in a solvent free system. Grasas Aceites 63, 202-208.   DOI
14 Stojanovic, M. J., Velickovic, D., Dimitrijevic, A., Milosavic, N., Knezevic-Jugovic, Z., and Bezbradica, D. (2013) Lipase-catalyzed synthesis of ascorbyl oleate in acetone: Optimization of reaction conditions and lipase reusability. J. Oleo. Sci. 62, 591-603.   DOI
15 Tada, N., Watanabe, H., Matsuo, N., Tokimitsu, I., and Okazaki, M. (2001) Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clin. Chim. Acta. 311, 109-117.   DOI
16 Toscano, G., Riva, G., Foppa Pedretti, E., and Duca, D. (2012) Vegetable oil and fat viscosity forecast models based on iodine number and saponification number. Biomass Bioenerg. 46, 511-516.   DOI
17 Wang, L. L., Wang, Y., Hu, C. Y., Cao, Q., Yang, X. H., and Zhao, M. M. (2011). Preparation of diacylglycerol-enriched oil from free fatty acids using lecitase ultra-catalyzed esterification. J. Oil Fat Ind. 88, 1557-1565.
18 Wang, W. F., Li, T., Ning, Z. X., Wang, Y. H., Yang, B., and Yang, X. Q. (2011) Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme Microb. Tech. 49, 192-196.   DOI
19 Wang, Y., Zhao, M. M., OU, S. Y., Xie, L.Y., and Tang, S. Z. (2009) Preparation of a diacylglycerol-enriched soybean oil by phosphalipase A1 catalyzed hydrolysis. J. Mol. Catal. BEnzym. 56,165-172.   DOI
20 Morita, O. and Soni, M. G. (2009) Safety assessment of diacylglycerol oil as edible oil: a review of the published literature. Food Chem. Toxicol. 47, 9-21.   DOI
21 Murase, T., Aoki, M., Wakisaka, T., Hase, T., and Tokimitsu, I. (2002) Anti-obesity effect of dietary diacylglycerol in C57 BL/6J mice: dietary diacylglycerol stimulates intestinal lipid metabolism. J. Lipid Res. 43, 1312-1319.
22 Ng, S. P., Lai, O. M., Abas, F., Lim, H. K., Beh, M. K., Ling, T. C., and Tan, C.P. (2014) Compositional and thermal characteristics of palm olein-based diacylglycerol in blends with palm super olein. Food Res. Int. 55, 62-69.   DOI
23 Awadallak, J. A., Voll, F., Ribas, M. C., Silva, C. D., Filho, L. C., and Silva, E. D. (2013) Enzymtic catalyzed palm oil hydrolysis under ultrasound irradiation: diacylglycerol synthesis. Ultrason. Sonochem. 20, 1002-1007.   DOI
24 Eom, T. K., Kong, C. S., Byun, H. G., Jung, W. K., and Kim, S. K. (2010) Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochem. 45, 738-743.   DOI
25 Flickinger, B. D. and Matsuo, N. (2003) Nutritional characteristics of DAG oil. Lipids 38, 129-132.   DOI
26 Gani, A., Ashwar, B. A., Akhter, G., Shah, A., Wani, I. A., and Masoodi, F A. (2017) Physico-chemical, structural, pasting and thermal properties of starches of fourteen himalayan rice cultivars. Int. J. Biol. Macromol. 95, 1101-1107.   DOI
27 Hong, S. I., Ma, N., Kim, I., Seo, J. J., and Kim, I. W. (2012) Lipase-catalyzed synthesis of capsiate analog using vanillyl alcohol and conjugated linoleic acid under vacuum system. Process Biochem. 47, 2317-2322.   DOI
28 Jin, j., Li, D., Zhu, X. M., Adhikari, P., Lee, K. T., and Lee, J. H. (2011) Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions. New Biotechnol. 28, 190-195.   DOI
29 Xu, X., Mu, H., Skands, A. R. H., Hoy, C. E., and Adler-Nissen, J. (1999) Parameters affecting diacylglycerol formation during the production of specific-structured lipids by lipase-catalyzed interesterification. J. Am. Oil Chem. Soc. 76, 175-181.   DOI
30 Zhong, N. J., Li, L., Xu, X. B., Cheong, L. Z., Zhao, X. H., and Li, B. (2010) Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chem. 122, 228-232.   DOI
31 John Craven, R. and Lencki, Robert W. (2010) Preparation of diacid 1,3-diacylglycerols. J. Am. Oil Chem. Soc. 87, 1281- 1291.   DOI
32 Kahveci, D., Guo, Z., Ozcelik, B., and Xu, X. B. (2010) Optimisation of enzymatic synthesis of diacylglycerols in binary medium systems containing ionic liquids. Food Chem. 119, 880-885.   DOI
33 Keng, P. S., Basri, M., Ariff, A. B., Abdul, M. B., Abdul Rah- man, R. N. Z., and Salleh, A. B.(2008) Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor. Bioresource Technol. 99, 6097-6104.   DOI
34 Kondo, H., Hase, T., Murase, T., and Tokimitsu, I. (2003) Digestion and assimilation features of dietary DAG in the rat small intestine. Lipids 38, 25-30.   DOI
35 Lerma-Garcia, M. J., Ramis-Ramos, G., Herrero-Martinez, J. M., and Simo-Alfonso, E. F. (2010) Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 1, 78-83.
36 Kristensen, J. B., Xu, X., and Mu, H. (2005) Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipase-catalyzed glycerolysis. J. Agr. Food Chem. 53, 7059-7066.   DOI