• Title/Summary/Keyword: Rayleigh Surface Wave

Search Result 91, Processing Time 0.023 seconds

Wave Screening Effectiveness of Infilled Trenches (방진벽의 표면가 산란효과)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.152-159
    • /
    • 1997
  • An analytical method is developed to study the propagation of surface waves across infilled trenches. The Green's function technique is used to estimate the reflection and transmission coefficients of Rayleigh waves across a semi-infinite plate inserted between two homogeneous quarter-spaces. After validating the method against experimental data, influence of the material contrast and the angle of incidence on the screening effectiveness of an infilled trench is examined.

  • PDF

Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order

  • Abd-Alla, A.M.;Abo-Dahab, S.M.;Khan, Aftab
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.221-230
    • /
    • 2017
  • In this paper, we investigated the propagation of thermoelastic surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order of nth order including time rate of strain under the influence of rotation. The general surface wave speed is derived to study the effectsof rotation andthermal onsurface waves. Particular cases for Stoneley, Love and Rayleighwaves are discussed.The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. Our results for viscoelastic of order zero are well agreed to fibre-reinforced materials. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is also observed that, surface waves cannot propagate in a fast rotating medium.Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation on fibre-reinforced anisotropic general viscoelastic media are very pronounced.

Guided wave field calculation in anisotropic layered structures using normal mode expansion method

  • Li, Lingfang;Mei, Hanfei;Haider, Mohammad Faisal;Rizos, Dimitris;Xia, Yong;Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • The guided wave technique is commonly used in structural health monitoring as the guided waves can propagate far in the structures without much energy loss. The guided waves are conventionally generated by the surface-mounted piezoelectric wafer active sensor (PWAS). However, there is still lack of understanding of the wave propagation in layered structures, especially in structures made of anisotropic materials such as carbon fiber reinforced polymer (CFRP) composites. In this paper, the Rayleigh-Lamb wave strain tuning curves in a PWAS-mounted unidirectional CFRP plate are analytically derived using the normal mode expansion (NME) method. The excitation frequency spectrum is then multiplied by the tuning curves to calculate the frequency response spectrum. The corresponding time domain responses are obtained through the inverse Fourier transform. The theoretical calculations are validated through finite element analysis and an experimental study. The PWAS responses under the free, debonded and bonded CFRP conditions are investigated and compared. The results demonstrate that the amplitude and travelling time of wave packet can be used to evaluate the CFRP bonding conditions. The method can work on a baseline-free manner.

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

Nondestructive Evaluation of the Characteristics of Degraded Materials Using Backward Radiated Ultrasound

  • Sung D. Kwon;Sung J. Song;Dong H. Bae;Lee, Young Z.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1084-1092
    • /
    • 2002
  • The frequency dependency of Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in two kinds of degraded specimens by scuffing or corrosion. Then, the frequency dependency is compared with the residual stress distribution or the corrosion-fatigue characteristics for the scuffed or corroded specimens, respectively. The width of the backward radiation profile increases with the increase of the variation in residual stress distribution for the scuffed specimens. In the corroded specimens, the profile width decreases with the increase of the effective aging layer thickness and is inversely proportional to the exponent, m, in the Paris' law that can predict the crack size increase due to fatigue. The result observed in this study demonstrates high potential of backward radiated ultrasound as a tool for nondestructive evaluation of subsurface gradient of material degradation generated by scuffing or corrosion.

A study on the velocity characteristics of surface acoustic wave in PSS-PZT ceramics (PSS-PZT계 세라믹스의 탄성표면파 속도특성에 관한 연구)

  • 강진규;백동수;김준한;홍재일;박창엽
    • Electrical & Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.109-114
    • /
    • 1993
  • 본 논문에서는 0.05Pb(Sn$_{1}$2/Sb$_{1}$2/)-0.35PbTiO$_{3}$-0.60PbZrO $_{3}$+0.4[wt%] MnO$_{2}$ 조성을 갖는 3성분계 압전세라믹스에 Cr$_{2}$O$_{3}$ 의 첨가량을 변화시켜서 지연선을 제작하고 탄성표면파를 여기시켜 전파속도를 측정하였으며 EMMAS 기준에 따라 각 시편의 재료정수를 측정하고 이를 압전방정식에 적용하여 매질에 따라 여기되는 탄성표면파의 계산속도를 이론적으로 산출한 후 이를 지연선에서 측정된 실험속도와 비교하여 재료의 특성이 탄성표면파의 전파특성에 미치는 영향을 조사하였다. 그 결과 SAW 지연선에서 측정된 탄성표면파는 Generalized Rayleigh Wave였으며 재료의 특성이 우수한 시편일 수록 계산속도와 측정속도와의 차가 적었던 것으로 나타났고 오차한도는 평균 99.39[%]였으므로 실험속도 측정방법이 feed through 현상없이 우수한 측정방법이었음을 알 수 있었다.

  • PDF

Detailed Analysis of Ground Vibration in Subway Tunnel (지하철 터널구간에서의 지반진동 상세해석)

  • Lee il-wha;Hwang seon-keun;Joh sung-ho;Ko hak-song
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.722-725
    • /
    • 2005
  • Recently, ground-borne noise and vibration generated by underground transit system has been recognized as an important environmental problem. This study reviews several of the improved procedures that have been used to predict ground-borne vibration. At first, ground stiffness profile is examined by SASW test which is the most reasonable surface wave test. It is very important to acquire the exact ground stiffness profile at ground response analysis. At second, the train loading to act roadbed is calculated by using the real measured phase angle data. In finite element analysis, averaged acceleration method, infinite element, Rayleigh damping and 2-dimensional wave propagation analysis is performed.

  • PDF

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

Nondestructive Evaluation of Ceramic/Metal Interface Using the V(z) Curve of Scanning Acoustic Microscope (초음파현미경에서 V(z) 곡선을 이용한 세라믹/금속 접합계면의 비파괴평가)

  • Park Ik-Keun;Lee Chul-Ku;Cho Dong-Su;Kim Yong-Kwon
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • A leaky surface acoustic wave (LSAW) velocity was measured using a scanning acoustic microscope on the ceramic/metal interface in order to investigate material properties. The inverse Fourier transform (IFFT) of the V(z) curve contains the reflectance function of a liquid-specimen interface. So, the longitudinal, transverse, and Rayleigh wave velocities for each layer are obtained by the inversion of the V(z) curve at the same time. This paper contains mainly the experimental procedure for measurements of the LSAW velocity, and the results obtained for the velocity variation of individual layer after the thermal shock. It is shown that this method is useful in measuring the material properties under external stress.

Elastic Wave Modeling Including Surface Topography Using a Weighted-Averaging Finite Element Method in Frequency Domain (지형을 고려한 주파수 영역 가중평균 유한요소법 탄성파 모델링)

  • Choi, Ji-Hyang;Nam, Myung-Jin;Min, Dong-Joo;Shin, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.93-98
    • /
    • 2008
  • Abstract: Surface topography has a significant influence on seismic wave propagation in a reflection seismic exploration. Effects of surface topography on two-dimensional elastic wave propagation are investigated through modeling using a weighted-averaging (WA) finite-element method (FEM), which is computationally more efficient than conventional FEM. Effects of air layer on wave propagation are also investigated using flat surface models with and without air. To validate our scheme in modeling including topography, we compare WA FEM results for irregular topographic models against those derived from conventional FEM using one set of rectangular elements. For the irregular surface topography models, elastic wave propagation is simulated to show that breaks in slope act as a new source for diffracted waves, and that Rayleigh waves are more seriously distorted by surface topography than P-waves.