Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.2.157

Guided wave field calculation in anisotropic layered structures using normal mode expansion method  

Li, Lingfang (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)
Mei, Hanfei (Department of Mechanical Engineering, University of South Carolina)
Haider, Mohammad Faisal (Department of Aeronautics and Astronautics, Stanford University)
Rizos, Dimitris (Department of Civil Engineering, University of South Carolina)
Xia, Yong (Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University)
Giurgiutiu, Victor (Department of Mechanical Engineering, University of South Carolina)
Publication Information
Smart Structures and Systems / v.26, no.2, 2020 , pp. 157-174 More about this Journal
Abstract
The guided wave technique is commonly used in structural health monitoring as the guided waves can propagate far in the structures without much energy loss. The guided waves are conventionally generated by the surface-mounted piezoelectric wafer active sensor (PWAS). However, there is still lack of understanding of the wave propagation in layered structures, especially in structures made of anisotropic materials such as carbon fiber reinforced polymer (CFRP) composites. In this paper, the Rayleigh-Lamb wave strain tuning curves in a PWAS-mounted unidirectional CFRP plate are analytically derived using the normal mode expansion (NME) method. The excitation frequency spectrum is then multiplied by the tuning curves to calculate the frequency response spectrum. The corresponding time domain responses are obtained through the inverse Fourier transform. The theoretical calculations are validated through finite element analysis and an experimental study. The PWAS responses under the free, debonded and bonded CFRP conditions are investigated and compared. The results demonstrate that the amplitude and travelling time of wave packet can be used to evaluate the CFRP bonding conditions. The method can work on a baseline-free manner.
Keywords
guided waves; anisotropic; layered plate; piezoelectric wafer active sensor; normal mode expansion; debonding;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Mei, H. and Giurgiutiu, V. (2018), "Guided wave excitation and propagation in damped composite plates", Struct. Health Monitor., 18(3), 690-714. https://doi.org/10.1177/1475921718765955   DOI
2 Meitzler, A., Tiersten, H., Warner, A., Berlincourt, D., Couqin, G. and Welsh III, F. (1988), "IEEE standard on piezoelectricity"
3 Mohseni, H. and Ng, C.T. (2013), "Rayleigh wave for detecting debonding in FRP-retrofitted concrete structures using piezoelectric transducers", Comput. Concrete, Int. J., 20(5), 583-593. https://doi.org/10.12989/cac.2017.20.5.583
4 Mohseni, H. and Ng, C.-T. (2019), "Rayleigh wave propagation and scattering characteristics at debondings in fibre-reinforced polymer-retrofitted concrete structures", Struct. Health Monitor., 18(1), 303-317. https://doi.org/10.1177/1475921718754371   DOI
5 Moulin, E., Assaad, J., Delebarre, C. and Osmont, D. (2000), "Modeling of Lamb waves generated by integrated transducers in composite plates using a coupled finite element-normal modes expansion method", J. Acoust. Soc. Am., 107(1), 87-94. https://doi.org/10.1121/1.428294   DOI
6 Ng, C.-T. and Veidt, M. (2012), "Scattering characteristics of Lamb waves from debondings at structural features in composite laminates", J. Acoust. Soc. Am., 132(1), 115-123. https://doi.org/10.1121/1.4728192   DOI
7 Pau, A. (2018), "Derivation of wave mode orthogonality from reciprocity in direct notation", J. Nondestr. Eval. Diagn. Progn. Eng. Syst., 1(2), 024501. https://doi.org/10.1115/1.4039477
8 Petrou, M.F., Parler, D., Harries, K.A. and Rizos, D.C. (2008), "Strengthening of reinforced concrete bridge decks using carbon fiber-reinforced polymer composite materials", J. Bridge Eng., 13(5), 455-467. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:5(455)   DOI
9 Rose, J.L. (2014), Ultrasonic Guided Waves in Solid Media, Cambridge University Press, New York, USA.
10 Achenbach, J. and Xu, Y. (1999), "Wave motion in an isotropic elastic layer generated by a time-harmonic point load of arbitrary direction", J. Acoust. Soc. Am., 106(1), 83-90 https://doi.org/10.1121/1.427037   DOI
11 Auld, B.A. (1990), Acoustic Fields and Waves in Solids, Vol. Ii, Krieger Publishing Company, Malabar, FL, USA.
12 Bai, H., Zhu, J., Shah, A.H. and Popplewell, N. (2004), "Threedimensional steady state Green function for a layered isotropic plate", J. Sound Vib., 269(1), 251-271. https://doi.org/10.1016/S0022-460X(03)00071-3   DOI
13 Shen, Y. and Giurgiutiu, V. (2013), "Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors", J. Intel. Mater. Syst. Struct., 25(4), 506-520. https://doi.org/10.1177/1045389X13500572   DOI
14 Barouni, A.K. and Saravanos, D.A. (2016), "A layerwise semianalytical method for modeling guided wave propagation in laminated and sandwich composite strips with induced surface excitation", Aerosp. Sci. Technol., 51, 118-141. https://doi.org/10.1016/j.ast.2016.01.023   DOI
15 Chimenti, D.E. (2014), "Review of air-coupled ultrasonic materials characterization", Ultrasonics, 54(7), 1804-1816. https://doi.org/10.1016/j.ultras.2014.02.006   DOI
16 Dassault Systèmes Simulia Corp. (2012), Abaqus 6.12 Analysis User's Manual.
17 Santoni, G. (2010), "Fundamental Studies in the Lamb-Wave Interaction between Piezoelectric Wafer Active Sensor and Host Structure During Structural Health Monitoring", Doctor of Philosophy, University of South Carolina, USA.
18 Santoni, B.G. and Giurgiutiu, V. (2012), "Exact shear-lag solution for guided waves tuning with piezoelectric-wafer active sensors", AIAA Journal, 50(11), 2285-2294. https://doi.org/10.2514/1.J050667   DOI
19 Shen, Y. and Giurgiutiu, V. (2014), "WaveFormRevealer: An analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage", Struct. Health Monitor., 13(5), 491-511. https://doi.org/10.1177/1475921714532986   DOI
20 Shen, Y. and Giurgiutiu, V. (2016), "Combined analytical FEM approach for efficient simulation of Lamb wave damage detection", Ultrasonics, 69, 116-128. https://doi.org/10.1016/j.ultras.2016.03.019   DOI
21 Sherafat, M.H., Guitel, R., Quaegebeur, N., Lessard, L., Hubert, P. and Masson, P. (2016), "Guided wave scattering behavior in composite bonded assemblies", Compos. Struct., 136, 696-705. https://doi.org/10.1016/j.compstruct.2015.10.046   DOI
22 Su, Z., Ye, L. and Lu, Y. (2006), "Guided Lamb waves for identification of damage in composite structures: A review", J. Sound Vib., 295(3-5), 753-780. https://doi.org/10.1016/j.jsv.2006.01.020   DOI
23 Velichko, A. and Wilcox, P.D. (2007), "Modeling the excitation of guided waves in generally anisotropic multilayered media", J. Acoust. Soc. Am., 121(1), 60-69. https://doi.org/10.1121/1.2390674   DOI
24 Glushkov, E., Glushkova, N. and Eremin, A. (2011), "Forced wave propagation and energy distribution in anisotropic laminate composites", J. Acoust. Soc. Am., 129(5), 2923-2934. https://doi.org/10.1121/1.3559699   DOI
25 Giurgiutiu, V. (2005), "Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring", J. Intel. Mater. Syst. Struct., 16(4), 291-305. https://doi.org/10.1177/1045389X05050106   DOI
26 Giurgiutiu, V. (2007), Structural Health Monitoring with Piezoelectric Wafer Active Sensors: With Piezoelectric Wafer Active Sensors, Elsevier.
27 Giurgiutiu, V. (2014), Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Elsevier/Academic Press, Amsterdam, Boston, MA, USA.
28 Gopalakrishnan, S., Ruzzene, M. and Hanagud, S. (2011), "Spectral Finite Element Method", In: Computational Techniques for Structural Health Monitoring, Springer, pp. 177-217.
29 Hirao, M. (2017), Electromagnetic Acoustic Transducers: Noncontacting Ultrasonic Measurements Using Emats, Springer, Japan.
30 Kamal, A.M., Lin, B. and Giurgiutiu, V. (2014), "Exact analytical modeling of power and energy for multimode lamb waves excited by piezoelectric wafer active sensors", J. Intel. Mater. Syst. Struct., 25(4), 452-471. https://doi.org/10.1177/1045389X13498310   DOI
31 Wang, Z., Qiao, P. and Shi, B. (2017), "A comprehensive study on active Lamb wave-based damage identification for plate-type structures", Smart Struct. Syst., Int. J., 20(6), 759-767. https://doi.org/10.12989/sss.2017.20.6.759
32 Vrettos, C. (2008), "Green's functions for vertical point load on an elastic half-space with depth-degrading stiffness", Eng. Anal. Bound. Elem., 32(12), 1037-1045. https://doi.org/10.1016/j.enganabound.2007.10.017   DOI
33 Wang, L. and Rokhlin, S.I. (2001), "Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media", Ultrasonics, 39(6), 413-424. https://doi.org/10.1016/S0041-624X(01)00082-8   DOI
34 Wang, L. and Yuan, F.G. (2007), "Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments", Compos. Sci. Technol., 67(7), 1370-1384. https://doi.org/10.1016/j.compscitech.2006.09.023   DOI
35 Weaver, R. and Pao, Y.-H. (1982), "Axisymmetric elastic waves excited by a point source in a plate", J. Appl. Mech., 49(4), 821-836. https://doi.org/10.1115/1.3162623   DOI
36 Wilcox, P.D. (2003), "Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures", IEEE Transact. Ultrason. Ferroelect. Freq. Control, 50(6), 699-709. https://doi.org/10.1109/TUFFC.2003.1209557   DOI
37 Yu, L. and Giurgiutiu, V. (2008), "In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection", Ultrasonics, 48(2), 117-134. https://doi.org/10.1016/j.ultras.2007.10.008   DOI
38 Zeitouni, A.I., Rizos, D.C. and Qian, Y. (2018), "Benefits of high strength reduced modulus (HSRM) concrete railroad ties under center binding support conditions", Constr. Build. Mater., 192, 210-223. https://doi.org/10.1016/j.conbuildmat.2018.10.124   DOI
39 Leckey, C.A.C., Wheeler, K.R., Hafiychuk, V.N., Hafiychuk, H. and Timucin, D.A. (2018), "Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment", Ultrasonics, 84, 187-200. https://doi.org/10.1016/j.ultras.2017.11.002   DOI
40 Leckey, C.A., Rogge, M.D. and Parker, F.R. (2014), "Guided waves in anisotropic and quasi-isotropic aerospace composites: Three-dimensional simulation and experiment", Ultrasonics, 54(1), 385-394. https://doi.org/10.1016/j.ultras.2013.05.007   DOI
41 Lee, J., Park, C. and Kong, C. (2013), "Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers", Smart Struct. Syst., Int. J., 11(2), 185-197. https://doi.org/10.12989/sss.2013.11.2.185   DOI
42 Lowe, M.J. (1995), "Matrix techniques for modeling ultrasonic waves in multilayered media", IEEE Transact. Ultrason. Ferroelect. Freq. Control, 42(4), 525-542. https://doi.org/10.1109/58.393096   DOI
43 Zhang, P., Tang, Z., Duan, Y., Yun, C.B. and Lv, F. (2018), "Ultrasonic guided wave approach incorporating SAFE for detecting wire breakage in bridge cable", Smart Struct. Syst., Int. J., 22(4), 481-493. https://doi.org/10.12989/sss.2018.22.4.481
44 Li, Y. and Thompson, R.B. (1990), "Influence of anisotropy on the dispersion characteristics of guided ultrasonic plate modes", J. Acoust. Soc. Am., 87(5), 1911-1931. https://doi.org/10.1121/1.399318   DOI
45 Li, L., Haider, M.F., Mei, H., Giurgiutiu, V. and Xia, Y. (2019), "Theoretical calculation of circular-crested Lamb wave field in single-and multi-layer isotropic plates using the normal mode expansion method", Struct. Health Monitor., 19(2), 357-372. https://doi.org/10.1177/1475921719848149   DOI
46 Liu, G. and Xi, Z. (2001), Elastic Waves in Anisotropic Laminates, CRC press.
47 Loveday, P.W. (2009), "Semi-analytical finite element analysis of elastic waveguides subjected to axial loads", Ultrasonics, 49(3), 298-300. https://doi.org/10.1016/j.ultras.2008.10.018   DOI
48 Knopoff, L. (1964), "A matrix method for elastic wave problems", Bull. Seismol. Soc. Am., 54(1), 431-438.   DOI