• 제목/요약/키워드: Rayleigh Ritz method

Search Result 192, Processing Time 0.031 seconds

Fluid Bounding Effect on Natural Frequencies of Fluid-Coupled Circular Plates

  • Jhung, Myung-Jo;Park, Young-Hwan;Jeong, Kyeong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1297-1315
    • /
    • 2003
  • This study deals with the free vibration of two identical circular plates coupled with a bounded or unbounded fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. The proposed method is verified by the finite element analysis using commercial program with a good accuracy The case of bounded or unbounded fluid is studied for the effect on the vibration characteristics of two circular plates. Also, the effect of gap between the plates on the fluid-coupled natural frequencies is investigated.

VIBRATION OF A CIRCULAR PLATE WITH A CONCENTRATED MASS ATTACHED ON A RADIUS

  • Lee, Jang-Moo;Hong, Jin-Sun
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An analytical method is presented for predicting the effect of a local deviation in the form of a concentrated mass along a radial line on the free bending vibration characteristics of a nearly axisymmetric circular plate. The approach is based on the Rayleigh-Ritz method and the expression of local deviation of the concentrated radial mass as the variation of heaviside unit step function. The effects of the concentrated mass on the natural frequencies and mode shapes of the plate are predicted with a proposed nondimensional mass parameter.

A Study on the Analysis of Bilateral Fin-Line Structure by Variational Method (변분법에 의한 Bilateral Fin-Line 구조의 해석에 관한 연구)

  • Lim Jae Bong;Lee Choong Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.20-26
    • /
    • 1986
  • In this paper, the Bilateral Fin-Line structure is analyzed by Rayleigh-Ritz variational method including the effects of conductor thickness. Bilateral Fin-Line bandpass filters are realized at X-Band. Experimental results are in good agreement with the theory.

  • PDF

A Method for Calculation of Compressive Strength of a One-Sided Stiffened Plate (편면 보강판의 압축강도 해석을 위한 한 방법)

  • C.D. Jang;S.I. Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, a method to overcome inefficiency of the finite element method in the calculation of compressive strength of one-sided stiffened plates, is proposed. In this method the collapse modes of stiffened plates are assumed as follows. a) Overall buckling $\rightarrow$ Overall collapse b) Local buckling $\rightarrow$ Overall collapse c) Local buckling $\rightarrow$ Local collapse In each collapse mode, shape of deflection is assumed, and then elastic large deformation analysis based on the Rayleigh-Ritz method is carried out. One-sided stiffening effect is considered by taking into account of the moment due to eccentricity. Plastic analysis by assuming hinge lines is also carried out. The ultimate strength of a stiffened plate is obtained as the point of intersection of the elastic analysis curve and the plastic one. From this study, it is concluded that the angles between the plastic hinge lines in plastic collapse mode are determined as the ones which give the minimum collapse load, and these angles are different from the ones assumed in the previous studies. Minimum stiffness ratios can also be calculated. Calculated results according to this method show good agreements with the results by the finite element method.

  • PDF

Free Vibration Analysis of the Scroll Compressor Housing by Shell Theory (셸이론을 이용한 스크롤 압축기 하우징의 자유진동해석)

  • Kim, H.S.;Lee, Y.S.;Yang, M.S.;Choi, M.H.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.242-247
    • /
    • 2000
  • In this study, the Rayleigh's energy method and the Rayleigh-Ritz method on the basis of Flugge's shell theory was used to analyze the dynamic characteristics of the scroll compressor housing with clamped boundary condition. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. In order to validate the theory, modal test was also performed by impact test and FFT analysis.

  • PDF

analysis and computer-Aided Design of Microwave E-plane Filter and Unilateral fin-Line Filter by Variational Method (변분법에 의한 마이크로파 E-평면 여파기와 Unilateral Fin-Line 여파기의 해석 및 CAD 설계)

  • 임재붕;이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.63-70
    • /
    • 1985
  • In this paper, the Unilateral Fin-line structure and the I-Plane structure are analysed by Rayleigh-Ritz variational method including the effect of conductor thickness. And a com-putcr-aided design program, CADUNI, is developed for microwave I-plane and Unilateral Fin-Line bandpass filters. Unilateral Fin-Line Filters are desigied at the center frequency of 10.5 GHz with guided bandwidth between 5% and 24.6%. Measured insertion loss is between 0.17 and 0.25 dB, and center frequency deviation is less than 0.2%. Experimental results are in good agree-ment with theory.

  • PDF

A Structural Analysis of Sandwich Plate with Unsymmetrical FRP Thick Faces (두껍고 비대칭인 FRP면재를 갖는 Sandwich 평판의 구조해석)

  • Ik-Tai Kim;Ki-Sung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.132-140
    • /
    • 1995
  • The structural behavior of sandwich plates with unsymmetricaly thick faces are analysed using Raleigh-Ritz Energy method by comparing the bending stresses, shear stresses, local bending stresses, membrane stresses of skin and core materials including local bending effect. As for sandwich materials, the combination of two types of face materials and three types of core materials are used in the analysis.

  • PDF

Vibration Analysis of Symmetrically Laminated Composite Rectangular Plates (대칭 복합적층 직사각형 판의 진동해석)

  • T.Y. Chung;J.H. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.140-148
    • /
    • 1992
  • The free vibration problem of symmetrically laminated composite rectangular plates is formulated based on anisotropic thick plate theory including the effects of shear deformation and rotary inertia. Considering the difficulty of obtaining closed-form solutions, Rayleigh-Ritz analysis using polynomials having the property of Timoshenko beam functions as trial functions is adopted. The boundary conditions elastically restrained against rotation are accomodated as well as classical boundary conditions. From the results of numerical studies, the validity of the present method is verified. And it is also found that the adoption of thick plate theory for the vibration analysis of laminated composite plates is essential because of the relatively large shear deformation effect, and that the convergence of the Rayleigh quotient to the stationary value is less rapid in anisotropic composite plates than that in the orthotropic ones due to more complicated mode shapes of the former.

  • PDF

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.42-45
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by only face material. In the experiment, if load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF