• Title/Summary/Keyword: Rating of impact sound insulation performance

Search Result 6, Processing Time 0.023 seconds

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

A Study of Rating Method Comparison for Heavy-weight Floor Impact Sound based on the Field Test Data in Apartment Houses (공동주택 중량바닥충격음 현장측정을 통한 차단성능 평가방법의 비교검토 연구)

  • Shin, Hoon;Back, Geon Jong;Kook, Chan;Song, Min Jeon;Kim, Sun Woo
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.187-194
    • /
    • 2010
  • Heavy-weight floor impact sound insulation performance criteria have been effective in Korea since the regulation which enforces the standard thickness of slabs in domestic apartment houses should be constructed by 180mm or 210mm was adopted. But every slab does not satisfy this criteria. So, review on existing floor impact sound insulation performance is needed to propose some basic materials for the revision of rating method. To achieve this goal, 63 field test data were checked and analyzed. The results of this study are as follows ; 1) The 210mm thickness slab has the characteristics of deeper level decrease above 120Hz frequency band than that of 180mm thickness slab's. 2) 27.5% of 180mm thickness slabs were satisfied the floor impact sound insulation performance criteria, whereas 65% of 210mm slabs do. 3) Among the main contribution frequency bands for the determination of single rating index, 63Hz was shown as the most contributive band in 210mm slabs. 4) In comparison of single rating index between bang machine test and ball test. there is a big difference between the two and this phenomenon is frequent in 210mm slab results. 5) Rating Methods for the analysis of cross-correlation between the amount of rating, the usefulness of the arithmetic mean could be secured.

Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources (바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰)

  • Lee, Min-Jung;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.69-79
    • /
    • 2017
  • The purpose of this study is to reconsider the rating method for the floor impact sound insulation performance in current criterion. Although there are some arguments about proper standard heavy impact source with reproducibility of actual impact source in residence building, bang machine is adopted as the only standard heavy impact source in domestic criterion. To inspect the rating methods of evaluation criteria, this study conducted vibration test for both of standard heavy impact sources and actual impact sources. Using the test results, the floor impact sound insulation performance levels were assessed by each of several criteria. In addition, low frequency noise beyond current criteria was evaluated. Consequently, the floor impact sound levels have different performance levels according to adopted criteria, and measured floor impact sounds are bound to annoy the neighbors in the low frequency range. Current criteria does not consider the spectrum characteristics of floor impact sound according to impact sources and low frequency noise. This may cause the difference between the floor impact sound insulation performance level and human perception. Thus current criterion needs to be complemented to reflect the spectrum characteristics of floor impact sound levels according to impact sources and sound pressure levels in low frequency range.

Investigation Research on the Residents Satisfaction Rating to the Floor Impact Sound in Apartment Buildings (공동주택 바닥충격음에 대한 거주자 만족도 조사 연구)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Kim, Young-Su;Yang, Kwan-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.179-184
    • /
    • 2010
  • In this study, the satisfaction rating to the floor impact sound was investigated for the residents in the apartment Building where the business scheme had been approved after 2005. The results are compared with existing research. The questionnaire survey was conducted to the 597 residents in 14 apartments complex which were applied with standard floor structure and approval floor structure. Most of respondents(71.1 %) answered that the performance of floor impact sound insulation, in case of standard floor structure, was improved compared to the apartments where they used to live. Comparing with the questionnaire survey result of existing research, the answered ratio of 'less annoyed' and 'less loud' is somewhat increased.

Comparison of Rating Methods for the Floor Impact Noise (바닥충격음 평가방법 중 단일수치평가량과 dB(A) 비교)

  • Park, Cheol-Yong;Jang, Dong-Woon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.612-615
    • /
    • 2006
  • In this study, we compared and analyzed the floor impact noise insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels(dB(A)). The results of this study are(1)dB(A) by the specified frequency is 0.5dB(A) at light weight and 2.5dB(A) at heavy weight upper than all pass dB(A)(2)the rating using reversed A-weighting curve is 5dB lower than dB(A)(3)the number of rating using reversed A-weighting curve mainly depends on impact noise pressure level of 63Hz in heavy weight but dB(A) does not.

  • PDF

A Study on the Proper Vocabularies for Evaluating Floor Impact Sound in Apartment Houses Considering Rating Methods (평가방법을 고려한 공동주택 바닥충격음 평가어휘 선정에 관한 연구)

  • 이재연;김선우;송민정
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.626-631
    • /
    • 2004
  • In this study, the extracted words from the former study such as annoying, loud, noisy, irritating, disagreeable, strident, disturbed, and dissonant are given to subjects in psycho acoustic experiment lab. And then, correlation analysis between the words and floor impact noise rating method were carried out. As a result of this study followings are suggested ‘Annoying’ is the word most accurately expressing the subjects’ unpleasant feeling of domestic floor impact noise. The results of this study could be basic materials for psycho acoustic experiments for criteria on floor impact noise and Sound Classification on Floor Impact Sound Insulation Performance.