• Title/Summary/Keyword: Rate-dependent hardening

Search Result 35, Processing Time 0.019 seconds

Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity (점소성 구성식의 적분에 미치는 선형화 방법의 영향)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

Design of Metal Cored Wire for Erosion Resistant Overlay Welding

  • Kim, Jun-Ki;Kim, In-Ju;Kim, Ki-Nam;Kim, Ji-Hui;Kim, Seon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.202-204
    • /
    • 2009
  • Erosion is a common failure mode of materials frequently encountered in plant and power industry. Although the erosion resistance of Fe-base alloy has been inferior to the other expensive materials, it is expected that the strain-induced martensitic transformation can impart high erosion resistance to Fe-base alloy. The key technology to develop Fe-base metal cored welding wire for erosion resistant overlay welding may include the strain-induced metallurgy for hardening rate control and the welding flux metallurgy for dilution control. Sophisticated studies showed that the strain-induced martensitic transformation behavior was related to the critical strain energy which was dependent on the alloy composition. Dilution and bead shape of overlay weld were proved to be affected by metal transfer mode during gas tungsten arc welding and elements in welding fluxes. It was considered that the highly erosion resistant Fe-base overlay weld could be achieved by precise control of alloy composition to have proper level of critical strain energy for energy absorption and welding flux formulation to have small amount of deoxidizing metallic elements for dilution.

  • PDF

Investigation of mechanical surface treatment effect on the properties of titanium thin film

  • Ehsan Bazzaz;Abolfazl Darvizeh;Majid Alitavoli;Mehdi Yarmohammad Tooski
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.33-49
    • /
    • 2024
  • Using the mechanical treatments for mechanical properties improvement was rarely in the development scope before. This research approves through analytical ways that surface impacts can improve the quality of the surface significantly. This fact is approved for deposited titanium on silicone substrate. The new algorithm called minimum resultant error method (MREM) which is a direct combination of nanoindentation, FEM and dimensional analysis through a reverse method is utilized to extract the mechanical characteristics of the coating surface before and after impact. This method is extended to the time dependent behavior of the material to obtain strain rate coefficient. To implement this new approach, a new analysis technic is developed to define the residual stress field caused by surface impact as initial condition for nanoindentation. Analyzing the model in micro and macro scale at the same time was one of the main resolved challenges in this study. The result was obtaining of the constants of Johnson-Cook constitutive equation. Comparing the characteristics of the coating surface before and after impact shows high improvement in yield stress (34%), Elastic modulus (7.75%) and strain hardening coefficient (2.8%). The main achievement is that the strength improvement in titanium thin layer is much higher than bulk titanium. The yield strength shows 41.7% improvement for coated titanium comparing with 24% for bulk material. The rate of enhancement is about 6 times when it comes to the Young's modulus.

Studies on Food Preservation by Controlling Water Activity - II. Dehydration Mechanism and Water Activity of Filefish Muscle - (식품보장(食品保藏)과 수분활성(水分活性)에 관(關)한 연구(硏究) - 제 2 보 : 말쥐치육(肉)의 건조기구(乾操機構)와 수분활성(水分活性) -)

  • Han, Bong-Ho;Choi, Soo-Il;Lee, Jong-Gab;Bae, Tae-Jin;Park, Ho-Gu
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.342-349
    • /
    • 1982
  • Filefish muscle in the form of thin plate $(5{\times}10{\times}0.4\;cm)$ was dried in a forced air dryer at $47.5^{\circ}C$ to study the relation between dehydration mechanism and water activity. The dryer was designed in such a way that the temperature, relative humidity and velocity of air could be controlled. The whole dehydration process of the filefish muscle was divided into two different drying rate periods, constant and falling rate period. During the constant drying rate period, the drying rate was proportional to the square root of air velocity under the conditions of constant temperature and relative humidity of air. The falling rate period was further divided into two different falling drying rate periods, first and second falling rate period. The first falling rate period was an unsaturated surface drying period caused by partial unsaturation of the drying surface with capillary condensed free water diffused from the internal part of the filefish muscle. At this stage he drying rate was mainly dependent on the relative humidity at constant air temperature, and case-hardening phenomenon started at the end of this stage. The moisture content and the water activity at which the second falling rate period started were not constant, because the drying rate of the first falling rate period was strongly dependent on the air humidity. The second falling rate period was again divided into two drying rate periods, former and latter period. The drying rates of both of these periods were independent on the external air humidity. During the former period of the second falling rate period, the dehydration was proceeded by diffusion and vaporization of capillary condensed free water in filefish muscle. The diffusion coefficient of water was $2.89{\times}10^{-10}m^2/sec\;at\;47.5^{\circ}C$. At this stage, the case-herdening continued until the water activity reduced to 0.7. The latter period of the second falling rate period started at the water activity of 0.45. The dedydration was proceeded by diffusion and vaporization of bound water, which adsorbed in multimolecular layers, through the hardened drying surface. The number of molecular layers was 4, and the diffusion coefficient of water during this stage was $4.38{\times}10^{-11}m^2/sec\;at\;47.5^{\circ}C$.

  • PDF

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.