DOI QR코드

DOI QR Code

Investigation of mechanical surface treatment effect on the properties of titanium thin film

  • Ehsan Bazzaz (Department of Mechanical Engineering, Islamic Azad University Central Tehran Branch) ;
  • Abolfazl Darvizeh (Department of Mechanical Engineering, University of Guilan) ;
  • Majid Alitavoli (Department of Mechanical Engineering, University of Guilan) ;
  • Mehdi Yarmohammad Tooski (Department of Mechanical Engineering, Islamic Azad University South Tehran Branch)
  • Received : 2021.08.06
  • Accepted : 2024.06.27
  • Published : 2024.07.25

Abstract

Using the mechanical treatments for mechanical properties improvement was rarely in the development scope before. This research approves through analytical ways that surface impacts can improve the quality of the surface significantly. This fact is approved for deposited titanium on silicone substrate. The new algorithm called minimum resultant error method (MREM) which is a direct combination of nanoindentation, FEM and dimensional analysis through a reverse method is utilized to extract the mechanical characteristics of the coating surface before and after impact. This method is extended to the time dependent behavior of the material to obtain strain rate coefficient. To implement this new approach, a new analysis technic is developed to define the residual stress field caused by surface impact as initial condition for nanoindentation. Analyzing the model in micro and macro scale at the same time was one of the main resolved challenges in this study. The result was obtaining of the constants of Johnson-Cook constitutive equation. Comparing the characteristics of the coating surface before and after impact shows high improvement in yield stress (34%), Elastic modulus (7.75%) and strain hardening coefficient (2.8%). The main achievement is that the strength improvement in titanium thin layer is much higher than bulk titanium. The yield strength shows 41.7% improvement for coated titanium comparing with 24% for bulk material. The rate of enhancement is about 6 times when it comes to the Young's modulus.

Keywords

Acknowledgement

I would like to thank and appreciate the endeavors of Professor Abolfazl Darvizeh my beloved supervisor which under his acute supervision this research work was carried successfully. But unfortunately, he passed away right after my viva, leaving us in sorrow and deep passion. At any break time, he was surrounded by a large group of students, with whom he was eagerly engaged in serious discussions. He was a devoted supervisor to his research students, many of whom regarded him as their "spiritual mentor". He not only took time to guide them through their research, but also provided them with freedom and opportunity to make their own scientific profile. Peace be upon his sole.

References

  1. Altabey, W. (2017), "An exact solution for mechanical behavior of BFRP nano-thin films embedded in NEMS", Adv. in Nano Res., 5(4), 337-358. http://doi.org/10.12989/anr.2017.5.4.337.
  2. Antunes, J., Menezes, L. and Fernandes, J. (2006), "Threedimensional numerical simulation of Vickers indentation tests", Int. J. Solids Struct., 43(3-4), 784-806. https://doi.org/10.1016/j.ijsolstr.2005.02.048.
  3. ABAQUS 6.14 (2014), Analysis User's Guide, Dassault Systems.
  4. Bagherifard, S., Ghelichi, R. and Guagliano, M. (2010), "A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material", Surf. Coat. Technol., 204(24), 4081-4090. https://doi.org/10.1016/j.surfcoat.2010.05.035.
  5. Bazzaz, E., Darvizeh, A., Alitavoli, M. and Yarmohammad Tooski, M. (2019a), "New hybrid approach in obtaining plastic properties by nanoindentation, finite element method and modified dimensional analysis", Persian J. Sci. Technol. Compos., 6(3), 451-464. https://doi.org/10.22068/jstc.2019.97778.1497.
  6. Bazzaz, E., Darvizeh, A., Alitavoli, M. and Yarmohammad Tooski, M. (2019b), "Comparing AM200® with titanium-based coatings elastic-plastic properties by nanoindentation, modified dimensional analysis and minimum resultant error method", Iranian J. Sci. Technol. Transact. Mech. Eng., 45, 197-213. https://doi.org/10.1007/s40997-020-00372-7.
  7. Bazzaz, E., Darvizeh, A., Alitavoli, M. and Yarmohammad Tooski, M. (2020a), "Implementation of the new minimum resultant error approach to extract elastic-plastic properties of titanium nitride thin film by nanoindentation, finite element analysis, and modified dimensional analysis", Proc IMechE Part C J Mech. Eng. Sci., 234(16), 1-17. https://doi.org/10.1177/0954406220914326.
  8. Bazzaz, E., Darvizeh, A., Alitavoli, M. and Yarmohammad Tooski, M. (2020b), "Investigation of the effect of high rate surface treatment on mechanical properties of titanium base coatings by experimental and numerical analysis", Ph.D. Thesis, University of Guilan, Department of Mechanical Engineering, Rasht, IRAN.
  9. Bazzaz, E., Darvizeh, A., Alitavoli, M. and Yarmohammad Tooski, M. (2021), "A novel method for determination of surface treatment effect on mechanical properties of titanium bulk material", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(1), 382-396. http://doi.org/10.1177/0954406221994881.
  10. Bressan, J., Tramontin, A. and Rosa, C. (2005), "Modelling of nanoindentation of bulk and thin film by finite element method. Wear, 258(1-4), 115-122. http://doi.org/10.1016/j.wear.2004.05.021.
  11. Bulaha, N. and Civcisa, G. (2016), "A comparative study for surface texture evaluation of TiAlN coatings", Mater. Today Proceedings, 3, 2766-2771. https://doi.org/10.1016/j.matpr.2016.06.025.
  12. Chen, L., El-Wardany, T. and Harris, W. (2004), "Modelling the effects of flank wear land and chip formation on residual stresses", CIRP Annals Manuf. Technol., 53(1), 95-98. https://doi.org/10.1016/S0007-8506(07)60653-2.
  13. Dao, M., Chollacoop, N.V., Van Vliet, K.J., Venkatesh, T.A. and Suresh, S.J.A.M. (2001), "Computational modeling of the forward and reverse problems in instrumented sharp indentation", Acta Mater., 49(19), 3899-3918. http://doi.org/10.1016/S1359-6454(01)00295-6.
  14. Dos Santos, J.A.B.O., Sales, W.F., Santos, S.C., Machado, A.R., da Silva, M.B., Bonney, J. and Ezugwu, E.O. (2007), "Tribological evaluation of TiN and TiAlN coated PM-HSS gear cutter when machining 19MnCr5 steel", Int. J. Adv. Manuf. Technol., 31, 629-637. https://doi.org/10.1007/s00170-005-0242-3.
  15. Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., 5(2), 69-97. http://doi.org/10.12989/anr.2017.5.2.069.
  16. Frija, M., Hassine, T., Fathallah, R., Bouraoui, C., Dogui, A. and de Genie Mecanique, L. (2006), "Finite element modelling of shot peening process: prediction of the compressive residual stresses, the plastic deformations and the surface integrity", Mater. Sci. Eng. A, 426(1-2), 173-180. https://doi.org/10.1016/j.msea.2006.03.097.
  17. Gao, X., Ma, Z., Jiang, W., Zhang, P., Wang, Y., Pan, Y. and Lu, C. (2016), "Stress strain relationships of LixSn alloys for Lithium ion batteries", J. Power Sourc., 311, 21-28. http://doi.org/10.1016/j.jpowsour.2016.02.024.
  18. Gauer, K., Dwivedi, M. and Bhatnagar, N. (2017), "Design and analysis of low velocity impact on thermoplastic hat section with curvilinear profile", Adv. Mater. Res., 6(1), 65-78. https://doi.org/10.12989/amr.2017.6.1.065 65.
  19. Ghasemi, A., Hassani-Gangaraj, S.M., Mahmoudi, A.H., Farrahi, G.H. and Guagliano, M. (2016), "Shot peening coverage effect on residual stress profile by FE random impact analysis", Surface Eng., 32(11), 861-870. http://doi.org/10.1080/02670844.2016.1192336.
  20. Girleanu, M., Pac, M.J., Louis, P., Ersen, O., Werckmann, J., Rousselot, C. and Tuilier, M.H. (2011), "Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy", Thin Solid Films, 519(18), 6190-6195. http://doi.org/10.1016/j.tsf.2011.04.113.
  21. Gsellmann, M., Klunsner, T., Mitterer, C., Marsoner, S., Skordaris, G., Bouzakis, K., Leitner, H. and Ressel, G. (2020), "Nearinterface cracking in a TiN coated high speed steel due to combined shear and compression under cyclic impact loading", Surface Coat. Technol., 394(25), 125854. http://doi.org/10.1016/j.surfcoat.2020.125854
  22. Guo, Y. and Li, Y. (2012), "A novel approach to testing the dynamic shear response of Ti-6Al-4V", Acta Mechanica Solida Sinica, 25(3), 299-311. http://doi.org/10.1016/S0894-9166(12)60027-5.
  23. Herrera, R., Kryshtab, T., Adame, J. and Kryvko, A. (2017), "ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient", Adv. Nano Res., 5(3), 193-201. http://doi.org/10.12989/anr.2017.5.3.193.
  24. Johnson, K.L. (2012), Contact Mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9781139171731
  25. Karimzadeh, A., Ayatollahi, M. and Alizadeh, M. (2014), "Finite element simulation of nano-indentation experiment on aluminum 1100", Comput. Mater. Sci., 81, 595-600. https://doi.org/10.1016/j.commatsci.2013.09.019.
  26. Kato, Y., Takafuji, S. and Hasegawa, N. (1999), "Effect of small artificial defects and shot peening on fatigue strength of Ti-6Al- 4V alloys at elevated temperatures", Proceedings of the International Conference on Shot Peening, Tokyo, Japan.
  27. Komarov, F.F., Konstantinov, V.M., Kovalchuk, A.V., Konstantinov, S.V. and Tkachenko, H.A. (2016), "The effect of steel substrate pre-hardening on structural, mechanical, and tribological properties of magnetron sputtered TiN and TiAlN coatings", Wear, 92-101, 352-353. https://doi.org/10.1016/j.wear.2016.02.007.
  28. Kot, M., Rakowski, W., Lackner, J. and Major, L. (2013), "Analysis of spherical indentations of coating-substrate systems: Experiments and finite element modeling", Mater. Des., 43, 99-111. https://doi.org/10.1016/j.matdes.2012.06.040.
  29. Lichinchi, M., Lenardi, C., Haupt, J. and Vitali, R. (1998), "Simulation of Berkovich nanoindentation experiment on thin films using the finite element method", Thin Solid Films, 312, 240-248. https://doi.org/10.1016/S0040-6090(97)00739-6.
  30. Li, L. and He, N. (2006), "A FEA study on mechanisms of sawtooth chip deformation in high speed cutting of Ti-6-Al-4V alloy", Proceedings of the Fifth International Conference on High Speed Machining (HSM), Metz, France, 759-767.
  31. Li, W., Huang, C., Yu, M. and Liao, H. (2013), "Investigation on mechanical property of annealed copper particles and cold sprayed copper coating by a micro-indentation testing", Mater. Des., 46, 219-226. https://doi.org/10.1016/j.matdes.2012.10.029.
  32. Ludian, T., Atoura, J. and Wagner, L. (2008), "Influence of shot peening and burnishing on smooth and notched fatigue strengths of titanium alloys", Proceedings of the International Conference of Shot Peening 10, Tokyo, Japan.
  33. Maawad, E., Brokmeier, H.G. and Wagner, L. (2008), "Residual stress-induced subsurface fatigue crack nucleation in shot peening titanium alloys", Proceedings of the International Conferrence of Shot Peening-10, Tokyo, Japan.
  34. Majzoobi, G., Azizi, R. and Alavi Nia, A. (2005), "A threedimensional simulation of shot peening process using multiple shot impacts", J. Mater. Process. Technol., 164-165, 1226-1234. https://doi.org/10.1016/j.jmatprotec.2005.02.139.
  35. Mamun, M. and Elmustafa, A. (2020), "Fracture toughness of amorphus SiC thin films using nanoindentation and simulation", Adv. Mater. Res., 9(1), 49-62. http://dx.doi.org/10.12989/amr.2020.9.1.049.
  36. Ma, Z., Zhou, Y., Long, S. and Lu, C. (2012a), "An inverse approach for extracting elastic plastic properties of thin films from small scale sharp indentation", J. Mater. Sci. Technol., 28(7), 626-635. https://doi.org/10.1016/S1005-0302(12)60108-X.
  37. Ma, Z., Zhou, Y., Long, S. and Luc, C. (2012b), "On the intrinsic hardness of a metallic film/substrate system: indentation size and substrate effects", Int. J. Plastic., 34,1-11. https://doi.org/1-11.10.1016/j.ijplas.2012.01.001.
  38. Ma, Z.S., Zhou, Y.C., Long, S.G., Zhong, X.L. and Lu, C. (2012c), "Characterization of stress-strain relationships of elastoplastic materials: An improved method with conical and pyramidal indenters", Mech. Mater., 54, 113-123. http://doi.org/10.1016/j.mechmat.2012.07.006.
  39. Meguid, S., Shagal, G. and Stranart, J. (2002), "3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model", Int. J. Impact Eng., 27(2), 119-134. https://doi.org/10.1016/S0734-743X(01)00043-4.
  40. Misra, R., Venkatsurya, P., Wu, K. and Karjalainen, L. (2013), "Ultrahigh strength martensite-austenite dual-phase steels with ultrafine structure: the response to indentation experiments", Mater. Sci. Eng. A, 560, 693-699. https://doi.org/10.1016/j.msea.2012.10.015.
  41. Ning, J., Nguyen, V., Huang, Y., Hartwig, K.T. and Liang, S.Y. (2018), "Inverse determination of Johnson-Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search", Int. J. Adv. Manuf. Technol., 99, 1131-1140. https://doi.org/10.1007/s00170-018-2508-6.
  42. Noii, N. and Aghayan, I. (2019), "Characterization of elasticplastic coated material properties by indentation techniques using optimisation algorithms and finite element analysis", Int. J. Mech. Sci., 152, 465-480. https://doi.org/10.1016/j.ijmecsci.2019.01.010.
  43. Oliver, W. and Pharr, G. (1992), "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", J. Mater. Res., 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564.
  44. Pelletier, H., Krier, J., Cornet, A. and Mille, P. (2000), "Limits of using bilinear stress]strain curve for finite element modeling of nanoindentation response on bulk materials", Thin Solid Films, 379(1-2), 147-155. https://doi.org/10.1016/S0040-6090(00)01559-5.
  45. Qi, K., Zhou, Q. and Yang, W. (2022), "Impact Contact mechanical Performance evaluation of coated medium by semianalytical method", Int. J. Solids Struct., 444(25), 128689. https://doi.org/10.1016/j.surfcoat.2022.128689
  46. Qi, K., Zhou, Q., Yang, W. and Yang, J. (2023) "A semi-analytical approach for elastoplastic impact-contact involving coated medium", Int. J. Solids Struct., 283(1), 112467. https://doi.org/10.1016/j.ijsolstr.2023.112467
  47. Sajadifar, S. and Yapici, G. (2015), "High temperature flow response modeling of ultra-fine grained titanium", Metals, 5(3), 1315-1327. https://doi.org/10.3390/met5031315.
  48. Sakharova, N., Fernandes, J., Antunes, J. and Oliver, W. (2009), "Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study", Int. J. Solids Struct., 46(5), 1095-1104. https://doi.org/10.1016/j.ijsolstr.2008.10.032.
  49. Seo, S., Min, O. and Yang, H. (2005), "Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique", Int. J. Impact Eng., 31(6), 735-754. https://doi.org/10.1016/j.ijimpeng.2004.04.010.
  50. Sherafatnia, K., Farrahi, G., Mahmoudi, A. and Ghasemi, A. (2016), "Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior", Mater. Sci. Eng., 657, 309-321. https://doi.org/10.1016/j.msea.2016.01.070.
  51. Soyama, H. and Takeo, F. (2020), "Effect of various peening methods on the fatigue properties of titanium alloy Ti6Al4V manufactured by direct metal laser sintering and electron beam melting", Materials, 13, 2216. https://doi.org/10.3390/ma13102216
  52. Stauss, S., Schwaller, P., Bucaille, J.L., Rabe, R., Rohr, L., Michler, J. and Blank, E. (2003), "Determining the stress-strain behaviour of small devices by nanoindentation in combination with inverse methods", Microelectr. Eng., 67-68, 818-825. https://doi.org/10.1016/s0167-9317(03)00192-8.
  53. Swietlicki, A., Szala, M. and Walczak, M. (2022), "Effects of shot peening and cavitation peening on properties of surface layer of metallic materials-A short review", Materials, 15, 2476. https://doi.org/10.3390/ma15072476
  54. Umbrello, D. (2008), "Finite element simulation of conventional and high speed machining of Ti6Al4V alloy", J. Mater. Proc. Technol., 196(1-3), 79-87. https://doi.org/10.1016/j.jmatprotec.2007.05.007.
  55. Vaidyanathan, R., Dao, M., Ravichandran, G. and Suresh, S. (2001), "Study of mechanical deformation in bulk metallic glass through instrumented indentation", Acta Mater., 49(18), 3781-3789. http://doi.org/10.1016/S1359-6454(01)00263-4.
  56. Wang, J.S., Zheng, X.J., Zheng, H., Song, S.T. and Zhu, Z. (2010), "Identification of elastic parameters of transversely isotropic thin films by combining nanoindentation and FEM analysis", Comput. Mater. Sci., 49, 378-385. http://doi.org/10.1016/j.commatsci.2010.05.025.
  57. Wang, Y., Cheng, J., Yang, H. and Zhang, C. (2018), "Numerical study of mechanical response of pure titanium during shot peening", IOP Conf. Series Mater. Sci. Eng., 362(1), 012009. https://doi.org/10.1088/1757-899X/362/1/012009.
  58. Wen, W., Becker A. and Sun W. (2017), "Determination of material properties of thin films and coatings using indentation tests: A review", J. Mater. Sci., 52(21), 12553-12573. https://doi.org/10.1007/s10853-017-1348-3.
  59. Yang, H. and Wang, Y. (2018), "Analysis of deformation and texture gradient in shot peened pure titanium", IOP Conf. Series Mater. Sci. Eng., 409(1), 012017. https://doi.org/10.1088/1757-899X/409/1/012017.
  60. Zhang, K., Jianxin, D., Shuting, L. and Xiaoming, Y. (2016), "Effect of micro/nano-textures and burnished MoS2 addition on the tribological properties of PVD TiAlN coatings against AISI 316 stainless steel", Surface Coatings Technol., 291, 382-395. https://doi.org/10.1016/j.surfcoat.2016.03.008.
  61. Zhan, H., Wang, G., Kent, D. and Dargusch, M. (2014), "Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models", Mater. Sci. Eng. A, 612, 71-79. http://doi.org/10.1016/j.msea.2014.06.030.