• Title/Summary/Keyword: Rate-capability

Search Result 1,196, Processing Time 0.022 seconds

Electrical Discharge Plasma in a Porous Ceramic Membrane-supported Catalyst for the Decomposition of a Volatile Organic Compound (다공질 세라믹지지 촉매 상에서의 플라즈마 방전을 이용한 휘발성유기화합물의 분해)

  • Jo, Jin-Oh;Lee, Sang Baek;Jang, Dong Lyong;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.433-437
    • /
    • 2013
  • Electrical discharge plasma created in a multi-channel porous ceramic membrane-supported catalyst was applied to the decomposition of a volatile organic compound (VOC). For the purpose of improving the oxidation capability, the ceramic membrane used as a low-pressure drop catalyst support was loaded with zinc oxide photocatalyst by the incipient wetness impregnation method. Alternating current-driven discharge plasma was created inside the porous ceramic membrane to produce reactive species such as radicals, ozone, ions and excited molecules available for the decomposition of VOC. As the voltage supplied to the reactor increased, the plasma discharge gradually propagated in the radial direction, creating an uniform plasma in the entire ceramic membrane above a certain voltage. Ethylene was used as a model VOC. The ethylene decomposition efficiency was examined with experimental variables such as the specific energy density, inlet ethylene concentration and zinc oxide loading. When compared at the identical energy density, the decomposition efficiency obtained with the zinc oxide-loaded ceramic membrane was substantially higher than that of the bare membrane case. Both nitrogen and oxygen played an important role in initiating the decomposition of ethylene. The rate of the decomposition is governed by the quantity of reactive species generated by the plasma, and a strong dependence of the decomposition efficiency on the initial concentration was observed.

Identification of Quantitative Trait Loci Associated with Leaf Length. Width and Length/width Ratio in Two Recombinant Inbred Lines of Soybean (Glycine max L.) (두 집단의 재조합 근친교잡 계통 (RIL) 콩에서 엽장과 엽폭 및 장폭비와 관련된 양적헝질 유전자좌 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.821-828
    • /
    • 2004
  • The increasing apparent photosynthetic rate per leaf area may improve seed yield in soybean. Leaf area, length and width are related to the photosynthetic capability of the plant. In this study, two populations derived from the cross of Keunolkong, Shinpaldalkong and Iksanl0 were evaluated with simple sequence repeat (SSR) markers to identify length, width and length/width ratio of leaf. Leaf length/width ratio were significantly negative correlation with leaf width in K/S and K/I populations. In the K/S population, two minor QTLs for leaf length (LL) were found on LG Dlb+W and 1. Two QTLs on LG J and L were related to LL in K/I population. Two and three minor QTLs were identified in leaf width with total phenotypic variation of 13% and 18.04 in K/S and K/I populations, respectively. The leaf length/width ratio, two QTLs on LG I and L, and three QTLs on LG Cl, E and L were related to K/S and K/I populations, respectively. Thus it is assumed that the leaf traits are very much dependent on the genotype used and different breeding approach should be considered for the selection of favorite leaf traits in soybean breeding programs.

Antioxidant Activity and Cytotoxic Effect of an Ethanol Extract from Seoritae (서리태 에탄올 추출물의 항산화 활성 및 암세포 증식 억제 효과)

  • Jeon, Yeon-Hee;Won, Ji-Hye;Kwon, Ji-Eun;Kim, Mee-Ra
    • Korean journal of food and cookery science
    • /
    • v.27 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • The antioxidant activity and cytotoxic effect of an ethanol extract from Seoritae were analyzed to develop new functional food materials. The antioxidant activity of Seoritae was determined by measuring electron donating ability with 1,1-diphenyl-2picrylhydrazyl (DPPH) and 2-2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays, as well as the ferric reducing antioxidant power (FRAP) assay. The cytotoxic effect of the Seoritae ethanol extract was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheltetrazolium (MTT) and sulforhodamine B (SRB) assays. As a result, the electron donating abilities of Seoritae against the DPPH and ABTS radicals were 63.75% and 87.68% at 500 ${\mu}g$/assay, respectively. The $IC_{50}$ values of Seoritae in the DPPH and ABTS assays were 385.39 ${\mu}g$/assay (128.46 ${\mu}g/mL$) and 209.39 ${\mu}g$/assay (51.83 ${\mu}g/mL$). Additionally, the FRAP value of Seoritae was 0.84 $FeSO_4$ eq. mM at 800 ${\mu}g$/assay. The total amounts of polyphenols and flavonoids, which indicate the antioxidant capability of Seoritae extract were 1.65 mg/g and 0.59 mg/g, respectively. Moreover, Seoritae extract showed a high cytotoxic effect of up to 81% against human cancer cells, particularly A-549 and HeLa cells. The growth inhibition rate of Seoritae extract against A-549 and HeLa cells was up to 76.48% and 75.67% in the MTT assay, and 78.98% and 80.54% in the SRB assay, respectively. The results of this study suggest that an ethanol extract of Seoritae is a potentially good natural antioxidant.

The design of Fully Differential CMOS Operational Amplifier (Fully Differential CMOS 연산 증폭기 설계)

  • Ahn, In-Soo;Song, Seok-Ho;Choi, Tae-Sup;Yim, Tae-Soo;Sakong, Sug-Chin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.85-96
    • /
    • 2000
  • It is necessary that fully differential operational amplifier circuit should drive an external load in the VLSI design such as SCF(Switched Capacitor Filter), D/A Converter, A/D Converter, Telecommunication Circuit and etc. The conventional CMOS operational amplifier circuit has many problems according to CMOS technique. Firstly, Capacity of large loads are not able to operate well. The problem can be solve to use class AB stages. But large loads are operate a difficult, because an element of existing CMOS has a quadratic functional relation with input and output voltage versus output current. Secondly, Whole circuit of dynamic range decrease, because a range of input and output voltages go down according as increasing of intergration rate drop supply voltage. The problem can be improved by employing fully differential operational amplifier using differential output stage with wide output swing. In this paper, we proposed new current mirror has large output impedance and good current matching with input an output current and compared with characteristics for operational amplifier using cascoded current mirror. To obtain large output swing and low power consumption we suggest a fully differential operational amplifier. The circuit employs an output stage composed new current mirror and two amplifier stage. The proposed circuit is layout and circuit of capability is inspected through simulation program(SPICE3f).

  • PDF

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.

An Analysis on the Optimal Level of the Maintenance Float Using Absorbing Markov Chain (흡수 마코프 체인을 활용한 적정 M/F 재고 수준에 관한 연구)

  • Kim, Yong;Yoon, Bong-Kyoo
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • The military is an organization where reliability and availability take much more importance than in any other organization. And, in line with a recent trend of putting emphasis on 'system readiness', not only functions but also availability of a weapon system has become one of achievement targets. In this regard, the military keeps spares for important facility and equipment, which is called as Maintenance Float (M/F), in order to enhance reliability and availability in case of an unforeseen event. The military has calculated yearly M/F requirements based on the number of equipment and utilization rate. However, this method of calculation has failed to meet the intended targets of reliability and availability due to lack of consideration on the characteristics of equipment malfunctions and maintenance unit's capability. In this research, we present an analysis model that can be used to determine an optimal M/F inventory level based on queuing and absorbed Markov chain theories. And, we applied the new analysis model to come out with an optimal volume of K-1 tank M/F for the OO division, which serves as counterattack military unit. In our view, this research is valuable because, while using more tractable methodology compared to previous research, we present a new analysis model that can describe decision making process on M/F level more satisfactorily.

Separator Effect on the Cell Failure of Lithium Secondary Battery using Lithium Metal Electrode (리튬금속 전극을 이용한 리튬이차전지의 내부단락에 대한 분리막의 영향)

  • Kim, Ju-Seok;Bae, Sang-Ho;Hwang, Min-Ji;Heo, Min-Yeong;Doh, Chil-Hoon
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.171-175
    • /
    • 2011
  • Lithium secondary batteries using lithium metal count electrode are easy to use and to analyze the specific characteristics of working electrode. Nevertheless, during the charge operation internal electrical short circuit could be caused by the dendritic growth of lithium. The cell failure by the short circuit depends on the condition of separator such as constitutive material and thickness. To prevent the cell failure caused by the dendritic growth of lithium, the electrochemical properties of the cell of lithium metal count electrode were evaluated for four different kinds of separator. Among the tested separators, GMF (glass micro-fiber filter, $300{\mu}m$) was the most promising one because it could effectively prevent the cell failure during the charge. The cell using GMF separator had relatively low impedance. Generally the cell using thicker separator than $50{\mu}m$ could effectively avoid the cell failure by internal short circuit and had the good cycleability. The highest rate capability by the signature method was acquired in the case of GMF separator.

High Frequency Noise Reduction in ECG using a Time-Varying Variable Cutoff Frequency Lowpass Filter (시변 가변차단주파수 저역통과필터를 이용한 심전도 고주파 잡음의 제거)

  • 최안식;우응제;박승훈;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2004
  • ECG signals are often contaminated with high-frequency noise such as muscle artifact, power line interference, and others. In the ECG signal processing, especially during a pre-processing stage, numerous noise removal techniques have been used to reduce these high-frequency noise without much distorting the original signal. This paper proposes a new type of digital filter with a continuously variable cutoff frequency to improve the signal quality This filter consists of a cutoff frequency controller (CFC) and variable cutoff frequency lowpass filter (VCF-LPF). From the noisy input ECG signal, CFC produces a cutoff frequency control signal using the signal slew rate. We implemented VCF-LPF based on two new filter design methods called convex combination filter (CCF) and weight interpolation fille. (WIF). These two methods allow us to change the cutoff frequency of a lowpass filter In an arbitrary fine step. VCF-LPF shows an excellent noise reduction capability for the entire time segment of ECG excluding the rising and falling edge of a very sharp QRS complex. We found VCF-LPF very useful and practical for better signal visualization and probably for better ECG interpretation. We expect this new digital filter will find its applications especially in a home health management system where the measured ECG signals are easily contaminated with high-frequency noises .

Determination of Optimal Hourly Water Intake Amount for H Arisu Purification Center using Linear Programming (선형계획법을 이용한 H 아리수 정수 센터 최적 취수량 결정)

  • Lee, Chulsoo;Lee, Kangwon
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1051-1064
    • /
    • 2015
  • Currently, the H purification plant determines the hourly water intake amount based on operator experience and skill. Therefore, inevitably, there are deviations among operators. While meeting time-varying demand and maintaining the proper water level in the clean water reservoir, the methodology for minimizing electricity cost, when dealing with different electricity rate time zones, is a very complicated problem, which is beyond an operator's capability. To solve this problem, a linear programming (LP) model is proposed, which can determine the optimal hourly water intake amount for minimizing the daily electricity cost. It is shown that an inaccurate estimate for the hourly water usage in the demand areas causes the water level constraint to be violated, which is the weak point of the proposed LP method. However, several examples with real-field data show that we can practically and safely solve this problem with safety margins. It is also shown that the safety margin method still works effectively whether the estimate is accurate or not. The operators need not attend the site at all times under the proposed LP method, and we can additionally expect reductions in labor costs.