• 제목/요약/키워드: Rarefaction

검색결과 63건 처리시간 0.023초

사각 미세채널 유동에서 마찰특성에 미치는 종횡비의 영향 (Influence of Aspect Ratio on Friction Characteristics in Rectangular Gas Microchannel Flow)

  • 무하마드타줄이슬람;이연원
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.18-29
    • /
    • 2009
  • 미세유동에 대한 폭발적인 관심에 의해 이 분야의 연구는 다양한 측면에서 이루어지고 있다. 본 연구는 사각 미세채널에서의 슬립유동에 관한 연구 중 아직 제대로 이루어져 있지 않은 마찰특성에 관한 종횡비의 영향에 초점을 맞추어 3차원 수치해석을 행하였다. 그 결과 종횡비가 1.0 일 때 상하 벽면 및 좌우측 벽면에서의 전단음력은 동일하나, 종횡비가 감소함에 따라 전단응력은 상하 벽면과 좌우측 벽면이 상이한 강도로 증가함을 보였다. 또한 Knudsen 수의 증가에 따라서는 전단응력이 감소함을 알 수 있었다. 따라서 벽면에서의 전단응력은 종횡비를 증가시키거나 혹은 Knudsen 수를 증가시키면 감소시킬 수 있으며, 마찰계수(fRe)도 종횡비를 증가시키거나 혹은 Knudsen 수를 증가시키면 감소됨을 밝혔다.

  • PDF

Langmuir 미끄럼 경계조건을 이용한 미소 박리유동의 예측 (Predictions of Microscale Separated Flow using Langmuir Slip Boundary Condition)

  • 이도형;맹주성;최형일;나욱상
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1097-1104
    • /
    • 2003
  • The current study analyzes Langmuir slip boundary condition theoretically and it is tested in practical numerical analysis for separation-associated flow. Slip phenomenon at the channel wall is properly implemented by various numerical slip boundary conditions including Langmuir slip model. Compressible backward-facing step flow is compared to other analysis results with the purpose of diatomic gas Langmuir slip model validation. The numerical solutions of pressure and velocity distributions where separation occurs are in good agreement with other numerical results. Numerical analysis is conducted for Reynolds number from 10 to 60 for a prediction of separation at T-shaped micro manifold. Reattachment length of flows shows nonlinear distribution at the wall of side branch. The Langmuir slip model predicts fairly the physics in terms of slip effect and separation.

계면마찰항을 고려한 이상유동에서 파동전파에 대한 수치적 연구 (TWO-PHASE WAVE PROPAGATIONS PREDICTED BY HLL SCHEME WITH INTERFACIAL FRICTION TERMS)

  • 염금수;장근식;정문선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.115-119
    • /
    • 2009
  • We numerically investigated propagation of various waves in the two-phase flows such as sound wave, shock wave, rarefaction wave, and contact discontinuity in terms of pressure, void fraction, velocity and density of the two phases. The waves have been generated by a hydrodynamic shock tube, a pair of symmetric impulsive expansion, impulsive pressure and impulsive void waves. The six compressible two-fluid two-phase conservation laws with interfacial friction terms have been solved in two fractional steps. The first PDE Operator is solved by the HLL scheme and the second Source Operator by the semi-implicit stiff ODE solver. In the HLL scheme, the fastest wave speeds were estimated by the analytic eigenvalues of an approximate Jacobian matrix. We have discussed how the interfacial friction terms affect the wave structures in the numerical solution.

  • PDF

화학반응을 수반하는 극초음속 희박류 유동의 직접모사법 개발 (A DSMC Technique for the Analysis of Chemical Reactions in Hypersonic Rarefied Flows)

  • 정찬홍;윤성준
    • 한국전산유체공학회지
    • /
    • 제4권3호
    • /
    • pp.63-70
    • /
    • 1999
  • A Direct simulation Monte-Carlo (DSMC) code is developed, which employs the Monte-Carlo statistical sampling technique to investigate hypersonic rarefied gas flows accompanying chemical reactions. The DSMC method is a numerical simulation technique for analyzing the Boltzmann equation by modeling a real gas flow using a representative set of molecules. Due to the limitations in computational requirements. the present method is applied to a flow around a simple two-dimensional object in exit velocity of 7.6 km/sec at an altitude of 90 km. For the calculation of chemical reactions an air model with five species (O₂, N₂, O, N, NO) and 19 chemical reactions is employed. The simulated result showed various rarefaction effects in the hypersonic flow with chemical reactions.

  • PDF

原子力 發電所 周邊의 鳥類相 (Avifauna on the Areas Round the Atomic Power Plant)

  • Kwon, Ki-Chung
    • The Korean Journal of Ecology
    • /
    • 제14권4호
    • /
    • pp.469-479
    • /
    • 1991
  • The abundance and local distribution of birds around the three atomic power plants were studied during summer in 1998 and winter 1989. It was particularly pointed out how to determine species diversity indices, rarefaction model appeared and habitat use. During the study over 2,200 birds were censused; black-tailed gull, terek sandpipper, asian wandering tattler and australian curlew accountedfor over 76% of the observed birds in summer. Black-tailed gull, black-headed gull, mallard, ancient murrelet and tree sparrow accounted for 76% of the observed birds in winter. overall, 53 species were occurred ; 23 have been observed on yonggwang-gun, 16 used on ulchin-gun, 12 used on kyungju-gun in summer. 18 on yonggwang-gun,,14 on ulchin-gun,12 on kyungju-gun in winter respectively. These three habitats in terms of their of species richness were computed as follows; yonggwang-gun has the highest richness with an expected species number of 17.5 as the same as two season. Kyungju-gun has the lowest with an expected species number of 8.2 in summer and 11.5 in winter.

  • PDF

WELL-BALANCED ROE-TYPE NUMERICAL SCHEME FOR A MODEL OF TWO-PHASE COMPRESSIBLE FLOWS

  • Thanh, Mai Duc
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.163-187
    • /
    • 2014
  • We present a multi-stage Roe-type numerical scheme for a model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage in the construction of the scheme computes the volume fraction at every time step. The second stage deals with the nonconservative terms in the governing equations which produces states on both side of the contact wave at each node. In the third stage, a Roe matrix for the two-phase is used to apply on the states obtained from the second stage. This scheme is shown to capture stationary waves and preserves the positivity of the volume fractions. Finally, we present numerical tests which all indicate that the proposed scheme can give very good approximations to the exact solution.

교란 유한요소법을 이용한 하드 디스크 슬라이더의 동특성 해석 (Dynamic Characteristics of HDD Slider by Perturbed Finite Element Method)

  • 황평;콴폴리냐
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.143-148
    • /
    • 2004
  • The numerical analysis of the hard disk drive slider is presented. The pressure distribution was calculated using the finite element method. The generalized Reynolds equation was applied in order to include the gas rarefaction effect. The balance of the air bearing force and preload force was considered. The characteristics of the small vibrations near the equilibrium were studied using the perturbation method. Triangular mesh with variable element size was employed to model the two-rail slider. The flying height, pitching angle, rolling angle, stiffness and damping of the two-rail slider were calculated for radial position changing from the inner radius to the outer radius and for a wide range of the slider crown values. It was found that the flying height, pitching angle and rolling angle were increased with radial position while the stiffness and damping coefficients were decreased. The higher values of crown resulted in increased flying height, pitching angle and damping and decreased stiffness.

  • PDF

Nonlinear Magnetosonic Wave Propagation in the Magnetosphere

  • Kim, Kyung-Im;Kim, Sungsoo S.;Lee, Dong-Hun;Kim, Kihong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권1호
    • /
    • pp.84-84
    • /
    • 2004
  • Using a one-dimensional MHD code of Total Variation Diminishing (TVD) scheme, we perform simulations of propagation of nonlinear magnetosonic waves. A magnetosonic wave is a longitudinal wave propagating perpendicularly to the magnetic field lines, and involves compression and rarefaction of the magnetic field lines and the plasma. We first confirm the theoretical solution of Lee and Kim (2000) for the evolution of nonlinear magnetosonic waves in the homogeneous space. (omitted)

  • PDF

압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법 (EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS)

  • 염금수;장근식
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

마이크로채널 흐름에 관한 종횡비의 영향 (Effect of Aspect Ratio on Gas Microchannel Flow)

  • 타줄 이슬람;이연원
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.16-21
    • /
    • 2007
  • Three dimensional numerical study was carried out to investigate the effect of aspect ratio on microchannel flow. We considered five straight rectangular channels with aspect ratios (height/width) 0.2, 0.4, 0.6, 0.8 and 1.0. Nitrogen gas flow was investigated for both slip and noslip wall boundary conditions. Isothermal wall condition was assumed. We used control volume method for this simulation. The slip velocity increases with the increase of aspect ratio. Friction coefficient decreases with the increase of aspect ratio. Slip friction coefficient is lower than noslip friction coefficient. Mass flow rate of slip model is higher than that of noslip model. We compared our results with the experimental result reported in the literature. The agreement was good.

  • PDF