Influence of Aspect Ratio on Friction Characteristics in Rectangular Gas Microchannel Flow

사각 미세채널 유동에서 마찰특성에 미치는 종횡비의 영향

  • Published : 2009.04.30

Abstract

미세유동에 대한 폭발적인 관심에 의해 이 분야의 연구는 다양한 측면에서 이루어지고 있다. 본 연구는 사각 미세채널에서의 슬립유동에 관한 연구 중 아직 제대로 이루어져 있지 않은 마찰특성에 관한 종횡비의 영향에 초점을 맞추어 3차원 수치해석을 행하였다. 그 결과 종횡비가 1.0 일 때 상하 벽면 및 좌우측 벽면에서의 전단음력은 동일하나, 종횡비가 감소함에 따라 전단응력은 상하 벽면과 좌우측 벽면이 상이한 강도로 증가함을 보였다. 또한 Knudsen 수의 증가에 따라서는 전단응력이 감소함을 알 수 있었다. 따라서 벽면에서의 전단응력은 종횡비를 증가시키거나 혹은 Knudsen 수를 증가시키면 감소시킬 수 있으며, 마찰계수(fRe)도 종횡비를 증가시키거나 혹은 Knudsen 수를 증가시키면 감소됨을 밝혔다.

Keywords

References

  1. Gad-el-Hak, M., 2001, The MEMS Handbook, CRC press, New York.
  2. A. Beskok and G. Karniadakis, 1994, "Simulation of heat and momentum transfer in complex microgeometries", Journal of Thermophysics and Heat Transfer, Vol. 8, No. 4, pp. 647-655. https://doi.org/10.2514/3.594
  3. S. A. Schaaf and P. L. Chambre, 1961, Flow of Rarefied gases, Princeton University Press, Princeton, NJ.
  4. P. Wu and W. A. Little, 1983, "Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators", Cryogenics, Vol. 23, No. 5, pp. 273-277. https://doi.org/10.1016/0011-2275(83)90150-9
  5. S. B. Choi, R. F. Barron and R. O. Warrington, 1991, "Fluid flow and heat transfer in microtubes", micromechanical sensors, Actuators, and systems, DSC ASME, New York, Vol. 32, pp. 123-134.
  6. D. Yu et al, 1995, "An experimental and theoretical investigation of fluid flow and heat transfer in microtubes", Proceedings of ASME/JSME Thermal Engineering joint conference, Maui, HI, pp. 523-530.
  7. J. C. Harley et al., 1995, "Gas flow in microchannels", J. Fluid Mech., Vol. 284, pp. 257-274. https://doi.org/10.1017/S0022112095000358
  8. T. Araki, M. S. Kim, H. Iwai and K. Suzuki, 2002, "An experimental investigation of gaseous flow characteristics in microchannels", Microscale Thermophysical Engineering, Vol. 6, pp. 117-130. https://doi.org/10.1080/10893950252901268
  9. J. Pfahler et al, 1991, "Gas and Liquid Flow in Small Channels", Micromechanical Sensors, actuators and Systems, DSC ASME, New York, Vol. 32, pp. 49-60.
  10. E. B. Arkilic, M. A. Schmidt and S. B. Kenneth, 1997, "Gaseous Slip Flow in Long Microchannles", Journal of Microelectromechanical Systems, Vol. 6, No. 2, pp. 167-178. https://doi.org/10.1109/84.585795
  11. G. L. Morini and M. Spiga, 1998, "Slip flow in rectangular microtubes", Microscale Thermophysics. Eng., Vol. 2, pp. 273-282. https://doi.org/10.1080/108939598199919
  12. W. A. Ebert and E. M. Sparrow, 1965, "Slip flow in rectangular and annular ducts", J. Basic Eng., Vol. 87, pp. 1018-1024. https://doi.org/10.1115/1.3650793
  13. C. S. Chen, 2000, "Numerical method for predicting three-dimensional steady compressible flow in long microchannel", J. Micromech. Microeng., Vol. 14, pp. 1091-1100. https://doi.org/10.1088/0960-1317/14/7/032
  14. R. W. Barber and D. R. Emerson, 2006, "Challenges in modeling gas-phase flow in microchannels: From slip to Transition", Heat Transfer Engineering, Vol. 27, No. 4, pp. 3-12. https://doi.org/10.1080/01457630500522271
  15. P. H. Oosthuizen and W. E. Carscallen, 1997, Compressible fluid flow, McGraw-Hill companies, Inc., pp. 464-479.
  16. R. K. Shah and A. L. London, 1998, Laminar flow forced convection in ducts, Academic Press, New York.
  17. K. C. Pong, et al, 1994, "Non-linear pressure distribution in uniform microchannels", ASME-Publications-FED, Vol. 197, pp. 51-56.
  18. E. B. Arkilic, S. B. Kenneth and M. A. Schmidt, 1994, "Gaseous flow in microchannels", FED Application of Microfabrication to Fluid Mechanics ASME, Vol. 197, pp. 57-66.
  19. E. B. Arkilic, S. B. Kenneth and M. A. Schmidt, 2001, "Mass flow and tangential momentum accommodation in silicon micromachined channels", J. Fluid Mech., Vol. 437, pp. 29-43.
  20. Md. Tajul and Y. W. Lee, 2007, "Effect of Aspect Ratio on Gas Microchannel Flow", Journal of KSPSE, Vol. 11, No. 3, pp. 16-21.
  21. G. Karniadakis and A. Beskok, 2002, Micro Flows: Fundamentals and simulation, Springer-Verlag, New York.
  22. C. Aubert and S. Colin, 2001, "Higher-order boundary conditions for gaseous flows in rectangular microducts", Micro-scale Thermophysical Engineering, Vo. 5, pp. 41-54. https://doi.org/10.1080/108939501300005367