• Title/Summary/Keyword: Rapid thermal annealing process

Search Result 204, Processing Time 0.022 seconds

Electrical Properties of Ultra-shallow$p^+-n$ Junctions using $B_{10}H_{14}$ ion Implantation ($B_{10}H_{14}$ 이온 주입을 통한 ultra-shallow $p^+-n$ junction 형성 및 전기적 특성)

  • 송재훈;김지수;임성일;전기영;최덕균;최원국
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • Fabricated were ultra-shallow $p^+-n$ junctions on n-type Si(100) substrates using decaborane $(B_{10}H_{14})$ ion implantation. Decaborane ions were implanted at the acceleration voltages of 5 kV to 10 kV and at the dosages of $1\times10^{12}\textrm{cm}^2$.The implanted specimens were annealed at $800^{\circ}C$, $900^{\circ}C$ and $1000^{\circ}C$ for 10 s in $N_2$ atmosphere through a rapid thermal process. From the measurement of the implantation-induced damages through $2MeV^4 He^{2+}$ channeling spectra, the implanted specimen at the acceleration voltage of 15 kV showed higher backscattering yield than those of the bare n-type Si wafer and the implanted specimens at 5 kV and 10 kV. From the channeling spectra, the calculated thicknesses of amorphous layers induced by the ioin implantation at the acceleration voltages of 5 kV, 10 kV and 15 kV were 1.9 nm, 2.5 nm and 4.3 nm, respectively. After annealing at $800^{\circ}C$ for 10 s in $N_2$ atmosphere, most implantation-induced damages of the specimens implanted at the acceleration voltage of 10 kV were recovered and they exhibited the same channeling yield as the bare Si wafer. In this case, the calculated thickness of the amorphous layer was 0.98 nm. Hall measurements and sheet resistance measurements showed that the dopant activation increased with implantation energy, ion dosage and annealing temperature. From the current-voltage measurement, it is observed that leakage current density is decreased with the increase of annealing temperature and implantation energy.

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF

Characterizatics of Composite Silicides from Co/Ni Structure (코발트/니켈 적층구조 박막으로부터 형성된 복합실리사이드)

  • Song Ohsung;Cheong Seonghwee;Kim Dugjoong;Choi Yongyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.769-774
    • /
    • 2004
  • 15 nm-Co/15 nm-Ni/P-Si(100)[Type I] and 15 nm-Ni/15 nm-Co/P-Si(100)(Type II) bilayer structures were annealed using a rapid thermal annealer for 40sec at $700/sim1100^{\circ}C$. The annealed bilayer structures developed into composite NiCo silicides and resulting changes in sheet resistance, composition and microstructure were investigated using Auger electron spectroscopy and transmission electron microscopy. Prepared NiCoSix films were further treated in a sequential annealing set up from $900\sim1100^{\circ}C$ with 30 minutes. The sheet resistances of NiCoSix from Type I maintained less than $7\;{\Omega}/sq$. even at the temperature of $1100{\circ}C$, while those of Type II showed about $5\;{\Omega}/sq$. with the thinner and more uniform thickness. With the additive post annealing, the sheet resistance for all the composite silicides remained small up to $900^{\circ}C$. The proposed NiCoSix films were superior over the conventional single-phased silicides and may be easily incorporated into the sub-0.1 ${\mu}m$ process.

Ferroelectric Properties of PZT Thin Films by RF-Magnetron sputtering (RF 마그네트론 스퍼터링 법을 이용한 PZT 박막의 강유전 특성)

  • Park, Young;Joo, Pil-Yeoun;Yi, Ju-Sin;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.341-344
    • /
    • 1999
  • The effects of post annealing treatments of ferroelectrlclty in PZT(P $b_{1.05}$(Z $r_{0.52}$, $Ti_{0.48}$) $O_3$ thin film deposited on Pt/ $SiO_2$/Si substrate by RF-Magnetron sputtering methode was Investigated. Analyses by RTA(Rapid Thermal Annealing) treatments reveled that the crystallization process strongly depend on the healing temperature. The Perovskite structure with strong PZT (101) plan was obtained by RTA treatments at 75$0^{\circ}C$ With increasing RTA temperature of PZI thin films, the coercive field and remanent Polarization decreased, while saturation polarization( $P_{r}$) was decreased. P-E curves of Pt/PZT/Pt capacitor structures demonstrate typical hysteresiss loops. The measure values of $P_{r}$,. $E_{c}$ and dielectric constants by post annealed at 75$0^{\circ}C$ were 38 $\mu$C/$\textrm{cm}^2$ 35KV/cm and 974, respectively. Switching polarization versus fatigue characteristic showed 12% degradation up to 10$^{7}$ cycles.s.s.s.s.s.s.

  • PDF

Se-loss-induced CIS Thin Films in RTA Process after Co-sputtering Using CuSe2 and InSe2 Targets

  • Kim, Nam-Hoon;Jun, Young-Kil;Cho, Geum-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1009-1015
    • /
    • 2014
  • Chalcopyrite $CuInSe_2$ (CIS) thin films were prepared without Se- / S-containing gas by co-sputtering using $CuSe_2$ and $InSe_2$ selenide-targets and rapid thermal annealing. The grain size increased to a maximum of 54.68 nm with a predominant (112) plane. The tetragonal distortion parameter ${\eta}$ decreased and the inter-planar spacing $d_{(112)}$ increased in the RTA-treated CIS thin films annealed at a $400^{\circ}C$, which indicates better crystal quality. The increased carrier concentration of RTA-treated p-type CIS thin films led to a decrease in resistivity due to an increase in Cu composition at annealing temperatures ${\geq}350^{\circ}C$. The optical band gap energy ($E_g$) of CIS thin films decreased to 1.127 eV in RTA-treated CIS thin films annealed at $400^{\circ}C$ due to the improved crystallinity, elevated carrier concentration and decreased In composition.

Laser-Induced Recrystallization of Perovskite Materials for High-Performance Flexible Light-Emitting Diode (고성능 유연 발광 다이오드 소자 구현을 위한 레이저 기반 페로브스카이트 소재의 재결정화)

  • Jae Chan Heo;Ji Eun Kim;Dong Gyu Lee;Yun Sik Hwang;Yu Mi Woo;Han Eol Lee;Jung Hwan Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.286-291
    • /
    • 2023
  • Perovskite materials are promising candidates for next-generation optoelectronic devices owing to their outstanding external quantum efficiency, high color purity, and ability to tune the light emission wavelength. However, conventional thermal annealing processes caused the degradation of perovskite, resulting in poor optoelectronic properties and a short lifetime. Herein, we propose a laser-induced recrystallization of perovskite thin film to enhance its light-emitting properties. Laser-induced recrystallization process was performed using rapid and instantaneous laser heating, which successfully induced grain growth of the perovskite material. The laser processing conditions were thoroughly optimized based on theoretical calculations and various material analyses such as x-ray diffraction, scanning electron microscope, and photoluminescence spectroscopy.

The fabrication of bolometric IR detector for glucose concentration detection (글루코오스 농도 측정을 위한 볼로미터 타입의 적외선 센서 제작)

  • Choi, Ju-Chan;Jung, Ho;Park, Kun-Sik;Park, Jong-Moon;Koo, Jin-Gun;Kang, Jin-Yeong;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.250-255
    • /
    • 2008
  • A vanadium pentoxide ($V_2O_5$)-based bolometric infrared (IR) sensor has been designed and fabricated using micro electro mechanical systems (MEMS) technology for glucose detection and its resistive characteristics has been illustrated. The proposed bolometric infrared sensor is composed of the vanadium pentoxide array that shows superior temperature coefficient of resistance (TCR) and standard silicon micromachining compatibility. In order to achieve the best performance, deposited $V_2O_5$ thin film is optimized by adequate rapid thermal annealing (RTA) process. Annealed vanadium oxide thin film has demonstrated a linear characteristic and relatively high TCR value (${-4}%/^{\circ}C$). The resistance of vanadium oxide is changed by IR intensity based on glucose concentration.

Property of Composite Silicide from Nickel Cobalt Alloy (니켈 코발트 합금조성에 따른 복합실리사이드의 물성 연구)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.17 no.2
    • /
    • pp.73-80
    • /
    • 2007
  • For the sub-65 nm CMOS process, it is necessary to develop a new silicide material and an accompanying process that allows the silicide to maintain a low sheet resistance and to have an enhanced thermal stability, thus providing for a wider process window. In this study, we have evaluated the property and unit process compatibility of newly proposed composite silicides. We fabricated composite silicide layers on single crystal silicon from $10nm-Ni_{1-x}Co_x/single-crystalline-Si(100),\;10nm-Ni_{1-x}Co_x/poly-crystalline-\;Si(100)$ wafers (x=0.2, 0.5, and 0.8) with the purpose of mimicking the silicides on source and drain actives and gates. Both the film structures were prepared by thermal evaporation and silicidized by rapid thermal annealing (RTA) from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 seconds. The sheet resistance, cross-sectional microstructure, surface composition, were investigated using a four-point probe, a field emission scanning probe microscope, a field ion beam, an X-ray diffractometer, and an Auger electron depth profi1ing spectroscopy, respectively. Finally, our newly proposed composite silicides had a stable resistance up to $1100^{\circ}C$ and maintained it below $20{\Omega}/Sg$., while the conventional NiSi was limited to $700^{\circ}C$. All our results imply that the composite silicide made from NiCo alloy films may be a possible candidate for 65 nm-CMOS devices.

Patterning and Characterization of Co/Ni Composite Silicide using EIB (FIB를 이용한 CoNi 복합실리사이드 나노배선의 패턴가공과 형상 분석)

  • Song Oh-Sung;Kim Sang-Yeob;Jung Yoon-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.332-337
    • /
    • 2006
  • We prepared 100 nm-thick CoNi composite silicide on a 70 nm-thick polysilicon substrate. Composite silicide laye.s were formed by rapid thermal annealing(RTA) at the temperatures of $700^{\circ}C,\;900^{\circ}C,\;1000^{\circ}C$ for 40 seconds. A Focused ion beam (FIB) was used to make nano-patterns with the operation range of 30 kV and $1{\sim}100$ pA. We investigated the change of thickness, line width, and the slope angle of the silicide patterns by FIB. More easily made with the FIB process than with the conventional polycide process. We successfully fabricated sub-100nm etched patterns with FIB condition of 30kv-30pA. Our result implies that we may integrate nano patterns with our newly proposed CoNi composite silicides.

  • PDF

Microstructure Characterization for Nano-thick Nickel Cobalt Composite Silicides from 10 nm-Ni0.5Co0.5 Alloy films (10 nm 두께의 니켈 코발트 합금 박막으로부터 제조된 니켈코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.308-317
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/(poly)Si and 10 nm-$Ni_{0.5}Co_{0.5}$/(Poly)Si structures to investigate the microstructure of nickel silicides at the elevated temperatures required lot annealing. Silicides underwent rapid annealing at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profilescope were employed for the determination of vortical microstructure and thickness. Nickel silicides with cobalt on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1100^{\circ}C$ and $900^{\circ}C$, respectively, while the conventional nickle monosilicide showed low resistance below $700^{\circ}C$. Through TEM analysis, we confirmed that a uniform, $10{\sim}15 nm$-thick silicide layer formed on the single-crystal silicon substrate for the Co-alloyed case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo-alloy composite silicide process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.