• Title/Summary/Keyword: Rapid processing

Search Result 1,391, Processing Time 0.027 seconds

Fabrication and characteristics of PZT ferroelectric thin films by Sol-Gel processing and rapid thermal annealing (Sol-gel법과 급속 열처리에 의한 PZT 강유전 박막의 제작과 그 특성)

  • 백동수;최형욱;김준한;신현용;김규수;박창엽
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.369-375
    • /
    • 1994
  • In this study, ferroelectric thin films of PZT with different Zr/Ti ratio were prepared by sol-get processing and annealed by rapid thermal annealing at >$500^{\circ}C$>$-700^{\circ}C$ for 10 sec. -1 min. Structures of the annealed films were examined by X-ray diffraction and SEM. Thin films of PZT with perovskite structure have been obtained by annealing at >$600^{\circ}C$ or above and for 20 seconds or longer. Maximum remnant polarization of 10.24.mu.C/cm$^{2}$ and minimum coercive field of 20.06 kV/cm were obtained from the 56/44 and 65/35 Zr/Ti composition films, respectively. Dielectric constant, .epsilon.$_{r}$ of 500-1300 and dielectric loss, tan .delta., of 0.01-0.035 were obtained from the films.s.

  • PDF

Laser Processing Characteristic of Polystyrene Foam Pattern (폴리스티렌 폼 패턴의 레이저 가공 특성)

  • Kim, Jae-Do;Kang, Kyoung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.772-778
    • /
    • 2003
  • Polystyrene foam is easily melted and vapoured by heat, has a proper quality in the pattern manufacturing and has a low price. The objective of this study is to develop a rapid prototyping method fur polystyrene foam pattern manufacuring to use the eliminative pattern casting (EPC). Applying fur the rapid prototyping concept reversely, the unnecessary part of section is vapored away by heat source of laser beam. In order to examine the applicability between laser beam process and polystyrene foam material, the basic experiments such as hole, line, plane and contour process are carried out. With these results, various three-dimensional shape patterns are made and this rapid prototyping tool for polystyrene foam manufacturing.

Technology Trend of Construction Additive Manufacturing (건축 스케일 적층제조 기술동향)

  • Park, Jinsu;Kim, Kyungteak;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.528-538
    • /
    • 2019
  • The transition from "More-of-Less" markets (economies of scale) to "Less-of-More" markets (economies of scope) is supported by advances of disruptive manufacturing and reconfigurable-supply-chain management technologies. With the prevalence of cyber-physical manufacturing systems, additive manufacturing technology is of great impact on industry, the economy, and society. Traditionally, backbone structures are built via bottom-up manufacturing with either pre-fabricated building blocks such as bricks or with layer-by-layer concrete casting such as climbing form-work casting. In both cases, the design selection is limited by form-work design and cost. Accordingly, the tool-less building of architecture with high design freedom is attractive. In the present study, we review the technological trends of additive manufacturing for construction-scale additive manufacturing in particular. The rapid tooling of patterns or molds and rapid manufacturing of construction parts or whole structures is extensively explored through uncertainties from technology. The future regulation still has drawbacks in the adoption of additive manufacturing in construction industries.

Study of Chemical Post-processing Method for Fused Deposition Modeled Three-Dimensional Printing Materials (FDM 방식 3D 프린팅 출력물의 화학적 후처리 공정 연구)

  • Kim, Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.839-844
    • /
    • 2017
  • In the past few years, three-dimensional (3D) printing has been developed as a rapid prototyping (RP) technique. The fused deposition modeling (FDM)-type 3D printing is one of the most useful RP methods; however, it still has several disadvantages, such as low conductivity, heat degradation, and low surface quality. In this study, test specimens are fabricated using an FDM-type 3D printer with an ABS material. Then, the specimens undergo post-processing on submerging in acetone with various processing times. As the processing time increases, surface roughness is enhanced significantly within the first five seconds by chemical processing, following which the processing effects are reduced. Furthermore, post processing causes the ultimate strength and strain to increase slightly with increased processing time.

Study on Rapid Manufacturing of 3D Functional Parts Combining VLM-ST Process and Its RT Technology (단속형 가변적층 쾌속조형공정과 쾌속툴링 기술을 이용한 쾌속 3차원 기능성 제품 개발에 관한 연구)

  • 안동규;이상호;김기돈;양동열
    • Transactions of Materials Processing
    • /
    • v.11 no.4
    • /
    • pp.323-331
    • /
    • 2002
  • The combination of rapid prototyping(RP) and rapid tooling(RT) has a potential for rapid manufacturing of three-dimensional parts. In the present study, a new RP system transfer type Variable Lamination Manufacturing using Expandable Polystyrene Foam (VLM-ST), is proposed to fabricate net shapes of three-dimensional prototypes. Various three-dimensional parts, such as a knob shape and a human head shape, are manufactured by the VLM-ST apparatus. In addition, a new rapid tooling technology, which utilizes a room temperature vulcanizing (RTV) molding technique and a triple reverse process technique, is proposed to manufacture net shapes of three-dimensional plastic parts using the prototypes of VLM-ST. A plastic part of the knob shape is produced by the proposed RT technology. The combination of the proposed RP and RT enables the manufacture of a plastic knob within two days.

Improvement of Thermoelectric Properties of Bismuth Telluride Thin Films using Rapid Thermal Processing (Bismuth Telluride 박막의 열전특성 개선을 위한 급속 열처리효과)

  • Kim, Dong-Ho;Lee, Gun-Hwan
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.292-296
    • /
    • 2006
  • Effects of rapid thermal annealing of bismuth telluride thin films on their thermoelectric properties were investigated. Films with four different compositions were elaborated by co-sputtering of Bi and Te targets. Rapid thermal treatments in range of $300{\sim}400^{\circ}C$ were carried out during 10 minutes under the reducing atmosphere (Ar with 10% $H_2$). As the temperature of thermal treatment increased, carrier concentrations of films decreased while their mobilities increased. These changes were clearly observed for the films close to the stoichiometric composition. Rapid thermal treatment was found to be effective in improving the thermoelectric properties of $Bi_2Te_3$ films. Recrystallization of $Bi_2Te_3$ phase has caused the enhancement of thermoelectric properties, along with the decrease of the carrier concentration. Maximum values of Seebeck coefficient and power factor were obtained for the films treated at $400^{\circ}C$ (about $-128{\mu}V/K$ and $9{\times}10^{-4}\;W/K^2m$, respectively). With further higher temperature ($500^{\circ}C$), thermoelectric properties deteriorated due to the evaporation of Te element and subsequent disruption of film's structure.

Microstructural Control of Mg-Zn Alloys by Rapid Solidification and Elemental Addition (급냉응고와 원소첨가에 의한 Mg-Zn합금의 미세조직 제어)

  • Kim, Yeon-Wook;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.283-288
    • /
    • 1998
  • Interest in rapid solidification of magnesium alloys stems from the fact that conventional ingot metallurgy alloys exhibit poor strength, ductility, and corrosion resistance. Such properties can be improved by microstructural refinement via rapid solidification processing. In this study, Mg-Zn alloys have been produced as continuous strips by melt overflow technique. In order to evaluate the influence of additional elements on the grain refinement and mechanical properties, Th and Zr were added in rapidly solidified Mg-5wt%Zn alloy. Then the microstructual observations were undertaken with the objective of evaluating the grain refinement as function of the cooling rate and the additional elements. The tremendous increase in hardness of Mg-Zn base alloys was mainly due to the refinement of the grain structure by the effect of rapid solidification and alloying elements. The formation of intermetallic phases on the grain boundaries may have a positive effect on the corroion resistance. Therefore, despite competition from many other developments, the rapid solidification processing of magnesium alloys emerges as a valuable method to develop superior and commercially acceptable magnesium alloys.

  • PDF

N-type Silicon Solar Cell Based on Passivation Layer Grown by Rapid Thermal Oxidation (Rapid Thermal Oxidation 기반의 표면 보호막을 이용한 n-type 실리콘 태양전지의 제작과 전기적 특성 분석)

  • Ryu, Kyungsun;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.18-21
    • /
    • 2013
  • $SiO_2$ layer grown by rapid thermal oxidation and $SiN_x$ layer were used for passivating the surface of n-type silicon solar cell, instead of only $SiN_x$ layer generally used in photovoltaic industry. The rapid thermal oxidation provides the reduction of processing time and avoids bulk life time degradation during the processing. Improvement of 30 mV in Voc and $2.7mA/cm^2$ in Jsc was obtained by applying these two layers. This improvement led to fabrication of a large area ($239cm^2$) n-type solar cell with 17.34% efficiency. Internal quantum efficiency measurement indicates that the improvement comes from the front side passivation, but not the rear side, by using $SiO_2/SiN_x$ stack.