DOI QR코드

DOI QR Code

Improvement of Thermoelectric Properties of Bismuth Telluride Thin Films using Rapid Thermal Processing

Bismuth Telluride 박막의 열전특성 개선을 위한 급속 열처리효과

  • Kim, Dong-Ho (Surface Technology Research Center, Korea Institute of Machinery and Materials (KIMM)) ;
  • Lee, Gun-Hwan (Surface Technology Research Center, Korea Institute of Machinery and Materials (KIMM))
  • 김동호 (한국기계연구원 재료기술연구소 표면기술연구센터) ;
  • 이건환 (한국기계연구원 재료기술연구소 표면기술연구센터)
  • Published : 2006.05.27

Abstract

Effects of rapid thermal annealing of bismuth telluride thin films on their thermoelectric properties were investigated. Films with four different compositions were elaborated by co-sputtering of Bi and Te targets. Rapid thermal treatments in range of $300{\sim}400^{\circ}C$ were carried out during 10 minutes under the reducing atmosphere (Ar with 10% $H_2$). As the temperature of thermal treatment increased, carrier concentrations of films decreased while their mobilities increased. These changes were clearly observed for the films close to the stoichiometric composition. Rapid thermal treatment was found to be effective in improving the thermoelectric properties of $Bi_2Te_3$ films. Recrystallization of $Bi_2Te_3$ phase has caused the enhancement of thermoelectric properties, along with the decrease of the carrier concentration. Maximum values of Seebeck coefficient and power factor were obtained for the films treated at $400^{\circ}C$ (about $-128{\mu}V/K$ and $9{\times}10^{-4}\;W/K^2m$, respectively). With further higher temperature ($500^{\circ}C$), thermoelectric properties deteriorated due to the evaporation of Te element and subsequent disruption of film's structure.

Keywords

References

  1. C. B. Vining, Nature, 413, 577 (2001) https://doi.org/10.1038/35098159
  2. B. C. Sales, Science, 295, 1248 (2002) https://doi.org/10.1126/science.1069895
  3. H. Zou, D. M. Rowe and G. Min, J. Cryst. Growth, 222, 82 (2001) https://doi.org/10.1016/S0022-0248(00)00922-2
  4. J. Dheepa, R. Sathyamoorthy, S. Velumani, A. Subbarayan, K. Natarajan and P. J. Sebastian, Solar Energy Materials & Solar Cells, 81, 305 (2004) https://doi.org/10.1016/j.solmat.2003.11.008
  5. F. Volklein, V. Baier, U. Dillner and E. Kessler, Thin Solid Films, 187, 253 (1990) https://doi.org/10.1016/0040-6090(90)90047-H
  6. K.-W. Cho and I.-H. Kim, Mater. Lett., 59, 966 (2005) https://doi.org/10.1016/j.matlet.2004.10.074
  7. A. Dauscher, A. Thomy and H. Scherrer, Thin Solid Films, 280, 61 (1996) https://doi.org/10.1016/0040-6090(95)08221-2
  8. R. S. Makala, K. Jagannadham and B. C. Sales, J. Appl. Phys., 94, 3907 (2003) https://doi.org/10.1063/1.1600524
  9. H. Noro, K. Sato and H. Kagechika, J. Appl. Phys., 73, 1252 (1993) https://doi.org/10.1063/1.353266
  10. A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, A. Boyer and J. Schumann, J. Appl. Phys., 89, 5009 (2001) https://doi.org/10.1063/1.1360701
  11. A. Giani, A. Boulouz, F. P.-Delannoy, A. Foucaran and A. Boyer, Mater. Sci. Eng., B, 6419 (1999)
  12. S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson and R. Meyer, Appl. Phys. Lett., 75, 1401 (1999) https://doi.org/10.1063/1.124707
  13. Y. Kim, S. Cho, A. DiVenere, G. K. Wong and J. B. Ketterson, Phys. Rev. B, 63, 155306-1 (2001) https://doi.org/10.1103/PhysRevB.63.155306
  14. D.-H. Kim and G.-H. Lee, J. Kor. Inst. Surf. Eng., 38(1), 7 (2005)
  15. D.-H. Kim and G.-H. Lee, J. Kor. Vac. Soc., 14(4), 215 (2005)
  16. C. M. Bhandari and D. M. Rowe, in CRC Handbook of Thermoelectrics, ed. D. M. Rowe (CRC Press, New York, USA, 1995) p.43

Cited by

  1. Fabrication Process and Sensing Characteristics of the In-plane Thermoelectric Sensor Consisting of the Evaporated p-type Sb-Te and n-type Bi-Te Thin Films vol.19, pp.1, 2012, https://doi.org/10.6117/kmeps.2012.19.1.033