DOI QR코드

DOI QR Code

Technology Trend of Construction Additive Manufacturing

건축 스케일 적층제조 기술동향

  • Park, Jinsu (Advanced Materials and Processing R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Kyungteak (Advanced Materials and Processing R&D Group, Korea Institute of Industrial Technology) ;
  • Choi, Hanshin (Advanced Materials and Processing R&D Group, Korea Institute of Industrial Technology)
  • 박진수 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재연구그룹) ;
  • 김경택 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재연구그룹) ;
  • 최한신 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재연구그룹)
  • Received : 2019.11.14
  • Accepted : 2019.12.12
  • Published : 2019.12.28

Abstract

The transition from "More-of-Less" markets (economies of scale) to "Less-of-More" markets (economies of scope) is supported by advances of disruptive manufacturing and reconfigurable-supply-chain management technologies. With the prevalence of cyber-physical manufacturing systems, additive manufacturing technology is of great impact on industry, the economy, and society. Traditionally, backbone structures are built via bottom-up manufacturing with either pre-fabricated building blocks such as bricks or with layer-by-layer concrete casting such as climbing form-work casting. In both cases, the design selection is limited by form-work design and cost. Accordingly, the tool-less building of architecture with high design freedom is attractive. In the present study, we review the technological trends of additive manufacturing for construction-scale additive manufacturing in particular. The rapid tooling of patterns or molds and rapid manufacturing of construction parts or whole structures is extensively explored through uncertainties from technology. The future regulation still has drawbacks in the adoption of additive manufacturing in construction industries.

Keywords

References

  1. G. Winch: Build. Res. Inf., 31 (2003) 107. https://doi.org/10.1080/09613210301995
  2. K. J. Negus, A. P. Stephens and J. Lansford: IEEE Personal Communications, 7 (2000) 20.
  3. E. Taniguchi and R. Van Der Heijden: Transp. Rev., 20 (2000) 65. https://doi.org/10.1080/014416400295347
  4. M. Karpiriski, A. Senart and V. Cahill: IEEE Xplore., (2006) 5.
  5. ISO/ASTM 52900:2015, ASTM International, (2015).
  6. E. Negri, L. Fumagalli and M. Macchi: Procedia Manuf., 11 (2017) 939. https://doi.org/10.1016/j.promfg.2017.07.198
  7. M. Merklein, D. Junker, A. Schaub and F. Neubauer: Phys. Procedia, 83 (2016) 549. https://doi.org/10.1016/j.phpro.2016.08.057
  8. J. B. Gardiner and S. Janssen: Robotic Fabrication in Architecture, Art and Design 2014, W. M. Gee and M. P. de Leon (Ed.), Springer, (2014) 131.
  9. K. V. Wong and A. Hernandez: ISRN Mechanical Engineering, 2012 (2012) 10.
  10. C. Gosselin, R. Duballet, Ph. Roux, N. Gaudilliere, J. Dirrenberger and Ph. Morel: Mater. Des., 100 (2016) 102. https://doi.org/10.1016/j.matdes.2016.03.097
  11. S. Lim, V. L. Prabhu, M. Anand and L. A. Taylor: Adv. Space Res., 60 (2017) 1413. https://doi.org/10.1016/j.asr.2017.06.038
  12. S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb and T. Thorpe: Autom. Constr., 21 (2012) 262. https://doi.org/10.1016/j.autcon.2011.06.010
  13. S. Neudecker, C. Bruns, R. Gerbers, J. Heyn, F. Dietrich, K. Dröder, A. Raatz and H. Kloft: Procedia CIRP, 43 (2016) 333. https://doi.org/10.1016/j.procir.2016.02.107
  14. M. Gotz, F. Dittmann and T. Xie: Microprocess. Microsyst., 33 (2009) 81. https://doi.org/10.1016/j.micpro.2008.08.001
  15. R. Duballet, O. Baverel and J. Dirrenberger: Autom. Constr., 83 (2017) 247. https://doi.org/10.1016/j.autcon.2017.08.018
  16. R. A. Buswell, W. R. L. de Silva, S. Z. Jones and J. Dirrenberger: Cem. Concr. Res., 112 (2018) 37. https://doi.org/10.1016/j.cemconres.2018.05.006
  17. P. Shakor, J. Renneberg, S. Nejadi and G. Paul: ISARC2017-34th International Symposium on Automation and Robotics in Construction, (2017).
  18. T. Marchment, J. Sanjayan and M. Xia: Mater. Des., 169 (2019) 107684. https://doi.org/10.1016/j.matdes.2019.107684
  19. G. Ma, Z. Li and L. Wang: Constr. Build. Mater., 162 (2018) 613. https://doi.org/10.1016/j.conbuildmat.2017.12.051
  20. B. Khoshnevis, A. Carlson and M. Thangavelu: NASA Technical Reports Server, (2017) 1.
  21. F. Bos, R. Wolfs, Z. Ahmed and T. Salet: Virtual. Phys. Prototyp., 11 (2016) 209. https://doi.org/10.1080/17452759.2016.1209867
  22. R. J. M. Wolfs, F. P. Bos and T. A. M. Salet: Cem. Concr. Res., 106 (2018) 103. https://doi.org/10.1016/j.cemconres.2018.02.001
  23. A. S. J. Suiker: Int. J. Mech. Sci., 137 (2018) 145. https://doi.org/10.1016/j.ijmecsci.2018.01.010
  24. N. Roussel, G. Ovarlez, S. Garralut and C. Brumaud: Cem. Concr. Res., 42 (2012) 148. https://doi.org/10.1016/j.cemconres.2011.09.004
  25. N. Roussel: Cem. Concr. Res., 112 (2018) 76. https://doi.org/10.1016/j.cemconres.2018.04.005
  26. J. B. Gardiner, S. Janssen and N. Kirchner: ISARC-2016-33rd International Symposium on Automation and Robotics in Construction, (2016) 515.
  27. J. zur Jacobsmuhlen, S. Kleszczynski, D. Schneider and G. Witt: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), (2013) 707.
  28. F. Baumann and D. Roller: MATEC Web of Conferences, 59 (2016) 06003.
  29. Z. Li, X. Liu, S. Wen, P. He, K. Zhong, Q. Wei, Y. Shi and S. Liu: Sensors, 18 (2018) 1180. https://doi.org/10.3390/s18041180