• Title/Summary/Keyword: Rapid learning

Search Result 592, Processing Time 0.027 seconds

Research on building AI learning data for rapid quality assessment of aggregates (골재의 신속한 품질평가를 위한 AI 학습용 데이터 구축에 관한 연구)

  • Min, Tae-Beom;Kim, In;Lee, Jae-Sam;Baek, Chul-Seoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.209-210
    • /
    • 2023
  • In this study, the accuracy of the assembly rate of fine aggregate and the cleavage rate of coarse aggregate was analyzed using the constructed learning data. As a result, it was possible to predict the distribution of assembly rate for fine aggregate through a simple sample collection image, showing an accuracy of 96%. The classification of the aggregates could be confirmed by analyzing the fracture shape of the gravel, showing an accuracy of 97%.

  • PDF

Regression Algorithms Evaluation for Analysis of Crosstalk in High-Speed Digital System

  • Minhyuk Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1449-1461
    • /
    • 2024
  • As technology advances, processor speeds are increasing at a rapid pace and digital systems require a significant amount of data bandwidth. As a result, careful consideration of signal integrity is required to ensure reliable and high-speed data processing. Crosstalk has become a vital area of research in signal integrity for electronic packages, mainly because of the high level of integration. Analytic formulas were analyzed in this study to identify the features that can predict crosstalk in multi-conductor transmission lines. Through the analysis, five variables were found and obtained a dataset consisting of 302,500, data points. The study evaluated the performance of various regression models for optimization via automatic machine learning by comparing the machine learning predictions with the analytic solution. Extra tree regression consistently outperformed other algorithms, with coefficients of determination exceeding 0.9 and root mean square logarithmic errors below 0.35. The study also notes that different algorithms produced varied predictions for the two metrics.

Big Data Based Urban Transportation Analysis for Smart Cities - Machine Learning Based Traffic Prediction by Using Urban Environment Data - (도시 빅데이터를 활용한 스마트시티의 교통 예측 모델 - 환경 데이터와의 상관관계 기계 학습을 통한 예측 모델의 구축 및 검증 -)

  • Jang, Sun-Young;Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.8 no.3
    • /
    • pp.12-19
    • /
    • 2018
  • The research aims to find implications of machine learning and urban big data as a way to construct the flexible transportation network system of smart city by responding the urban context changes. This research deals with a problem that existing a bus headway model is difficult to respond urban situations in real-time. Therefore, utilizing the urban big data and machine learning prototyping tool in weathers, traffics, and bus statues, this research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data is gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is implemented by the machine learning tool (RapidMiner Studio) and conducted several tests for bus delays prediction according to specific circumstances. As a result, possibilities of transportation system are discussed for promoting the urban efficiency and the citizens' convenience by responding to urban conditions.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Novel Image Classification Method Based on Few-Shot Learning in Monkey Species

  • Wang, Guangxing;Lee, Kwang-Chan;Shin, Seong-Yoon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.79-83
    • /
    • 2021
  • This paper proposes a novel image classification method based on few-shot learning, which is mainly used to solve model overfitting and non-convergence in image classification tasks of small datasets and improve the accuracy of classification. This method uses model structure optimization to extend the basic convolutional neural network (CNN) model and extracts more image features by adding convolutional layers, thereby improving the classification accuracy. We incorporated certain measures to improve the performance of the model. First, we used general methods such as setting a lower learning rate and shuffling to promote the rapid convergence of the model. Second, we used the data expansion technology to preprocess small datasets to increase the number of training data sets and suppress over-fitting. We applied the model to 10 monkey species and achieved outstanding performances. Experiments indicated that our proposed method achieved an accuracy of 87.92%, which is 26.1% higher than that of the traditional CNN method and 1.1% higher than that of the deep convolutional neural network ResNet50.

A Study on Image Labeling Technique for Deep-Learning-Based Multinational Tanks Detection Model

  • Kim, Taehoon;Lim, Dongkyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.

Malware Classification using Dynamic Analysis with Deep Learning

  • Asad Amin;Muhammad Nauman Durrani;Nadeem Kafi;Fahad Samad;Abdul Aziz
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.49-62
    • /
    • 2023
  • There has been a rapid increase in the creation and alteration of new malware samples which is a huge financial risk for many organizations. There is a huge demand for improvement in classification and detection mechanisms available today, as some of the old strategies like classification using mac learning algorithms were proved to be useful but cannot perform well in the scalable auto feature extraction scenario. To overcome this there must be a mechanism to automatically analyze malware based on the automatic feature extraction process. For this purpose, the dynamic analysis of real malware executable files has been done to extract useful features like API call sequence and opcode sequence. The use of different hashing techniques has been analyzed to further generate images and convert them into image representable form which will allow us to use more advanced classification approaches to classify huge amounts of images using deep learning approaches. The use of deep learning algorithms like convolutional neural networks enables the classification of malware by converting it into images. These images when fed into the CNN after being converted into the grayscale image will perform comparatively well in case of dynamic changes in malware code as image samples will be changed by few pixels when classified based on a greyscale image. In this work, we used VGG-16 architecture of CNN for experimentation.

A Study on the Application of Measurement Data Using Machine Learning Regression Models

  • Yun-Seok Seo;Young-Gon Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.47-55
    • /
    • 2023
  • The automotive industry is undergoing a paradigm shift due to the convergence of IT and rapid digital transformation. Various components, including embedded structures and systems with complex architectures that incorporate IC semiconductors, are being integrated and modularized. As a result, there has been a significant increase in vehicle defects, raising expectations for the quality of automotive parts. As more and more data is being accumulated, there is an active effort to go beyond traditional reliability analysis methods and apply machine learning models based on the accumulated big data. However, there are still not many cases where machine learning is used in product development to identify factors of defects in performance and durability of products and incorporate feedback into the design to improve product quality. In this paper, we applied a prediction algorithm to the defects of automotive door devices equipped with automatic responsive sensors, which are commonly installed in recent electric and hydrogen vehicles. To do so, we selected test items, built a measurement emulation system for data acquisition, and conducted comparative evaluations by applying different machine learning algorithms to the measured data. The results in terms of R2 score were as follows: Ordinary multiple regression 0.96, Ridge regression 0.95, Lasso regression 0.89, Elastic regression 0.91.

Exploring Edutech-based Vocational Education and Training Model for Worker Training Programs

  • Kyung-Hwa Rim;Jungmin Shin;Ju-ri Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.273-283
    • /
    • 2023
  • Education has recently witnessed a rapid increase in the use of edutech worldwide. This study focuses on Korean workers and explores an edutech-based learning model for vocational education and training. Based on analyses of edutech cases and interviews with edutech experts, a draft edutech model was designed and the validity was evaluated based on two Delphi surveys with a panel of experts in the field. The study's findings suggest that edutech-based employee education and training should prioritize LXP orientation (last CVR=1, last Mean=4.70) , implement adaptive learning through learning analytics (last CVR=1, last Mean=4.90), enhance the human touch effect using edutech (last CVR=1, last Mean=4.90), and emphasize the importance of designing curricula that apply edutech in a step-by-step learning process while incorporating suitable instructional design for the key technologies involved in vocational training programs. In addition, it was revealed that there is a strong need to implement a method that makes each stage of the learning process more effective (before, during, and after). Edutech-based vocational training program should consider the interests of all stakeholders, including learners, instructors, vocational training institutions, and government agencies. Given the promotion of government-sponsored vocational training projects in Korea, the findings of this research are likely to have significant implications for the future of Korea's education and training policies.

Research on the Design and Use of Digital Badges to Increase Educational Value (교육적 가치를 높이는 디지털배지 설계와 활용 연구)

  • Youn A Min;Ji-Eun Lee
    • Journal of Information Technology Services
    • /
    • v.22 no.6
    • /
    • pp.71-86
    • /
    • 2023
  • The rapid change in industry and the technological gap give rise to social demand for upskilling and reskilling and spread of alternative education. Against this backdrop, digital certification and career management tools can be used to manage various types of learning activities comprehensively. Digital badges provide various kinds of history information related to individual learning, and the reliability and transparency of the issued information can be strengthened by applying blockchain technology. There have been various discussions about digital badges for a long time, but due to the lack of standards to support the issuance and distribution of digital badges, they have been partially used in some areas. However, interest in digital badges is increasing due to the development of related technologies, establishment of standards, paradigm changes in higher education, and government policies related to nurturing digital talent. This paper deals with the use of digital badges for efficient and transparent learning management and career management in an online learning environment. The researcher analyzes the technical characteristics and use cases of digital badges, and proposes a plan for use in online higher education based on them.