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Abstract 
There has been a rapid increase in the creation and alteration of 
new malware samples which is a huge financial risk for many 
organizations. There is a huge demand for improvement in 
classification and detection mechanisms available today, as some 
of the old strategies like classification using mac learning 
algorithms were proved to be useful but cannot perform well in the 
scalable auto feature extraction scenario. To overcome this there 
must be a mechanism to automatically analyze malware based on 
the automatic feature extraction process. For this purpose, the 
dynamic analysis of real malware executable files has been done 
to extract useful features like API call sequence and opcode 
sequence. The use of different hashing techniques has been 
analyzed to further generate images and convert them into image 
representable form which will allow us to use more advanced 
classification approaches to classify huge amounts of images using 
deep learning approaches. The use of deep learning algorithms like 
convolutional neural networks enables the classification of 
malware by converting it into images. These images when fed into 
the CNN after being converted into the grayscale image will 
perform comparatively well in case of dynamic changes in 
malware code as image samples will be changed by few pixels 
when classified based on a greyscale image. In this work, we used 
VGG-16 architecture of CNN for experimentation. 
Keywords: 
Malware Classification, SimHash, Hashing, Opcodes, Deep 
Learning Models, CNN, VGG 16.  

 
1. Introduction 
 

Malicious or malware software is a major problem in 
modern-day computing devices, especially containing the 
data. Many anti-malware (anti-virus) softwares detect and 
delete malwares from the computer but the malwares 
nowadays are programmed in such a way that it can mutate 
itself to attack again without being detected by the anti-
malware software. The creation of new types of malware on 
daily basis is affecting many companies and organizations 
financially and also affecting many individual user's 
security which was also reported by McAfee's annual report 
[1]. However, there are reverse engineering procedures like 
signature-based or heuristics-based detection and analysis 
but the creation of different unique versions of the same 
malware using different polymorphic and metamorphic 
algorithms [2] make it difficult to automate the reverse 
engineering procedures using these techniques. 

Malware is one of the major challenges to Internet 
security. The report from Symantec in 2016 claimed that 

more than 430 million unique malware were discovered in 
2015[3]. Today, malware is increasing with many different 
patterns and new families for different malign purposes. 
The purpose of malware is to interrupt the flow of normal 
operations, gather sensitive data or information. Many types 
of malware are divided according to their functionality and 
purpose. Some of the types are backdoor worms, Spyware, 
Adware, Rootkit, Trojan-horse, etc. The history of malware 
starts from the 1970s when the malware was used to spread 
offline using Floppy Disks and other external devices. As 
the age of networks and the internet matured in the late 90s, 
the malware authors used this platform to quickly transfer 
malware from one computer to many different systems. The 
malware types varied from email worms to rootkit and SQL 
injections became one of the popular types to infiltrate and 
take advantage of the lack of security protocols in many 
websites. After 2010, there is a significant evolution in the 
sophistication and power of malware which is being 
developed by authors to bypass many anti-malware systems 
and also used to attack many government institutes and the 
type of malware grew rapidly with the growth in 
ransomware and illegal schemes. Today, many unique 
malwares are getting created at a rapid speed using 
techniques that allow malwares to be not detected by classic 
signature-based or heuristic-based techniques [4]. 

Different detection techniques were introduced, which 
include signature-based malware detection. These 
techniques try to match the unique signature of malware, 
and also behavioral/pattern-based malware detection [5]. 
This requires the malware to be detected in a runtime 
environment or virtual environment that is more time and 
resource-consuming. Also, these approaches were later 
exploited by malware makers by making malicious 
software more dynamic and unique each time with new 
attacks which makes it impossible for these methods to 
detect malware. 

With the introduction of machine learning approaches 
[10] in many domains, malware detection also benefits by 
quickly detecting using fewer resources than previous 
techniques. The different algorithms that are used for this 
purpose require efficient feature extraction techniques to be 
used based on the classification algorithm used for the 
problem. Malware authors have now developed different 
techniques to bypass anti-malware software like packing, 
encryption, or obfuscation techniques [6]. As obfuscation 
techniques became more popular, the dynamic analysis of 
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malware became necessary to get rid of this type of 
malware. As dynamic analysis executes malware in a 
sandbox virtual environment to get traces of its behavior. It 
allows the classification model to detect malware based on 
its behavior similarity between new and known ones. Now 
to circumvent this advancement the malware author inserts 
meaningless codes or tries to shuffle the sequence of 
programs [8]. To get rid of these changes to create new 
variants of the same malware family, the use of malware in 
the form of grayscale images [9] can be used. As malware 
code changes small parts of the original source code to 
produce a new variant of malware, images can capture small 
changes yet retain the global structure. Hence, using images 
we can detect samples belonging to the same family because 
they appear very similar to the captured image and the 
image structure. 

Previously for the new changes in malware creation, the 
machine learning algorithms became popular for malware 
detection. These machine learning approaches are based on 
heuristic feature engineering which is expensive and un- 
scalable [36]. A lot of effort is spent in feature engineering, 
which requires domain expertise to know the characteristics 
that make the objects belong to different categories of 
malware. Also because of constant evolution and changes 
in patterns of malware using different obfuscation 
techniques, these machine learning algorithms faced a drift 
problem due to lack of ability to understand features 
automatically [10]. Further, these algorithms were unable to 
maintain good accuracy by increasing the number of 
datasets and variations. For the domain of malware 
classification, advanced machine learning techniques based 
on AI, specifically deep learning. The main reason for using 
the deep learning approach was the more robust and 
scalable approach of these techniques, as the architecture of 
deep learning algorithms are designed in a way that it can 
easily be extended for the new data because the use of 
neurons and layers in the deep learning architecture can 
easily be increased by increasing the number of arguments 
in the code methods [11]. 

For this problem, many machine learning algorithms 
have been utilized for a variety of malware samples. 
Different researchers have used different techniques of 
machine learning like Hidden Markov Models were used to 
model system call sequences [12], Support Vector Machine 
and random forest trees were used for different feature 
extraction techniques [13][14]. Several other machine 
learning algorithms were also used for malware detection 
but the main problem is that many of these algorithms are 
based on domain knowledge of malwares and its feature 
analysis. Many researchers used feature engineering, where 
features are used to train a machine learning model to 
classify and make decisions but due to the change in the 
malware type from the existing types (and hence features), 
these models are unable to classify the new malware based 
on the modified features. This results in miss classification. 

To reduce the inefficiency of feature engineering in a 
constantly changing feature environment and to extract 
useful information from raw data and enable models to be 
able to self-learn new features to improve malware 
classification is our main focus. 

Deep learning models have shown great results with 
rapid improvements in areas like object recognition, speech 
recognition [15]. It uses the neural network architecture 
which consists of many hidden layers to learn new features 
of the training set. As compared to traditional approaches, 
we have used Convolutional Neural Network [16] approach 
which has not been explored by many researchers for 
malware classification problems. CNN performed well in 
different problems related to image classification like image 
recognition. For this purpose, the malware files were 
converted into greyscale images, later on, used to train the 
CNN model. The main advantage of classifying malware 
based on images is that the malwares of the same family are 
similar in visualization that helps in identifying different 
variants by comparing few pixel changes of the same family 
which was difficult to identify using previous approaches.  

There is a huge demand for improvement in malware 
classification and detection mechanisms as malwares now 
can affect computers without getting identified using 
different obfuscation techniques. For this purpose, the 
dynamic malware analysis is used to detect the changed 
behavior of malware by running the malware inside a virtual 
sandbox environment [7] called cuckoo. Malware 
Classification has been a very famous research topic 
because of many gaps that still exist in classification 
techniques. After many problems from different domains 
are being applied on deep learning architecture for better 
accuracy and scalable solutions, the malware classification 
problem has also been applied on different CNN 
architectures, but not much work has been done on more 
robust and new architectures like VGG-16 [17]. Some of the 
work was found using malware classification with deep 
learning algorithms using static analysis [19], because of 
easier conversion of already prepared binaries into images. 

In this research, the dynamic analysis is done not only 
on already prepared malware files collection but also on 
generally available files from personal computers to test the 
model for all types of datasets. The behavior of malware 
files after getting identified from the sandbox environment 
in the form of API system calls [20] will be converted into 
an opcode sequence. This allows us to develop a mechanism 
that can represent the useful features of malware in a way 
that it can be represented to automatically analyze small 
changes. The SimHash hashing [21] techniques used 
previously have been used to get more weight of important 
features as the hashing technique is a very important part of 
the conversion of malware into useful grayscale images. 

The paper is organized as follows: Section 2 is the 
literature review, Section 3 explains the methodology, and 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023 
 

 

51

 

results are presented and discussed in Section 4. Section 5 
concludes the paper and specifies the future work. 
 
 
2. Literature  
 

Much work has been done for malware classification 
using the classical signature and heuristic-based 
approaches. Also, some of the machine learning approaches 
have been used for classification but the latest work is being 
done using deep learning algorithms to get better results 
using images. 

 
2.1 Graph-Based Approaches  

T. Wuchner et al. [22] introduced a compression-based 
graph mining technique for dynamic malware detection 
which scans unknown graphs for characteristics of malware 
behavior patterns and compares it with the repository of 
already labeled malign patterns. The approach followed by 
the author is to first retrieve data under the sandbox 
environment by identifying the system call traces for each 
program sample and convert that system calls into a 
quantitative data flow graph. After data retrieval, the 
subgraphs are extracted from QDFGs to identify the pattern 
which is then stored in a repository to capture the basic 
pattern of known malwares. Now to train the classifier the 
author used the mined patterns on the training set and 
recorded which sub-pattern belongs to malware and benign 
software respectively. This helps classifiers understand 
different relationships of mined patterns. Now to identify 
the new malware- whether it is malign or benign the 
program sample has to through the same step to generates 
subgraphs (pattern), after that the QDFGs of this unknown 
sample is matched with previously generated detection 
patterns which are then converted into a feature vector using 
the same process used for generating training feature. 
Finally, this test feature vector is then passed to the 
classifier which results in the classification of the sample 
test program as malware or benign software. 
 

 
2.2 API call Analysis Approach 

Youngjoon Ki et al [23] worked on dynamic analysis 
techniques using the API call analysis. For this purpose, the 
Detours hooking library was used to trace the API call 
sequence of malware under a virtual environment which is 
a hooking library used to intercept the call sequence to 
target function and provide a user to insert a detour function 
to analyze the API calls between the start and completion of 
the program. The tracing of API calls is done using 23,080 
malware samples. For creating the signature of API call 
sequence all API call sequences which are labeled as 
malware are extracted and stored in the database along with 
multiple sequence alignment which helps in finding out the 

longest common sequence. After that in the dynamic 
analysis process, the call sequence of a randomly generated 
program is compared with the signature and longest 
common sequence of malware program APIs which were 
stored in the database. 

Alazab et al. [50] provide a major improvement in 
detecting zero-day malware by improving the efficiency of 
previous zero-day classification techniques. The author 
classified zero-day malware with high levels of accuracy 
and efficiency based on the frequency of Windows API 
calls after disassembling the malware file which is then 
stored into a signature database after passing through 
similarity measures to generate similarity reports. After 
that, the mutual information-based maximum relevance 
filter is applied to get the ranking of API functions to get 
relevant features before being given as input to the training 
classifier. Using Naive Bayes and KNN, they got 98.5 % 
accuracy with less than 0.25 FPR. 

Iwamoto et al. [51] worked on a simple classification 
methodology to compare the pairs of consecutive API calls 
which are maintained using a graph data structure. They are 
then compared with the executable API calls, already 
identified as malware to determine the similarity using the 
dice coefficient. The similarity matrix produced by the 
analysis system considers many features using modules like 
control flow analyzer, API call extractor, etc. To analyze the 
similarity factor of the malware files the hierarchical cluster 
analysis is done to do visualization using similarity values. 

 
2.3 Machine Learning Approaches 

   Schultz et al. [24] mainly used some static features like 
PR head, sequence of string, and sequence of bytes. Also, 
different methods like signature-based were used to 
differentiate malicious executables from one another.  A 
ripper method [25] was used as a rule creation algorithm 
and Naive Bayes and Muti Naive Bayes were used as a 
learning algorithm that helped in obtaining classification 
accuracy of 97.11%. These data mining methods at that time 
doubled the decision rates for new malicious executables. 

A much better result was then achieved by Kolter and 
Maloof et al. [26] by using a byte code of N-gram as a 
feature. Different types of machine learning algorithms like 
SVM, Decision Trees algorithms, and boosting were used 
with features selected as the most important n-grams for 
classification. Among all the methods the decision tree gave 
better results with a ROC curve of 0.996.  

A new method was introduced to detect the malware which 
is unknown or not based on the signature-based method 
which was used previously [4][7][39]. This method was 
based on the frequency of operational codes which was 
introduced along with classification algorithms like KNN, 
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Bayesian Network, SVM and it gives the 92.2% 
frequency with one opcode and 95.90% frequency with two 
opcode sequence lengths. This method was a major step 
towards the dynamic identification of malware, which 
mostly occurs using different code obfuscation techniques. 

Shabtai et al. [24] introduced a new feature extraction 
technique called OpCode n-gram patterns. The opcode 
sequence was obtained after disassembling process of 
malware file and analyzing it which methods like Document 
frequency, G-mean, using this technique many learning 
algorithms like SVM, logistic regression, naive Bayes, 
random forest was used but the most frequency of 95.14% 
was obtained using Random Forest [14]. 

The major advancement in malware classification came 
after the Microsoft Kaggle challenge with a dataset of 
malwares in hex and assembly code format. For this format 
of malware, many features were used which were 
introduced by Ahmedi et al. [28] including image 
representation and entropy methods. These features are then 
combined using feature fusion techniques which combine 
all the feature categories sequentially in a single feature 
vector to be able to run a classifier on them which then gives 
the accuracy of 99.8% using the XGBoost classification 
algorithm. To overcome the difficulty of correct feature 
extraction the deep learning algorithm performed this task 
with more efficiency without analyzing the data available 
before running classification tasks. Following is the 
research work on malware classification carried out using 
deep learning algorithms. 

 

 

2.4 Deep Learning Approaches 

The first step towards a deep learning model for 
malware classification was taken by Nataraj et al. [29]. The 
authors came up with the approach of visualizing and 
classifying greyscale images using image processing 
techniques. The classification was made based on the 
observation that images from the same malware family have 
the same type of texture and sequence of pixels in images. 
In this research, they represented images in the range of 0-
255 (black-white) and observed that the obtained image 
presented different sections of information about malware. 
The main breakthrough of this research was that there was 
no need for disassembly or code execution for classification 
and image features were computed using GIST descriptor 
and KNN for classification. 

A deep feed-forward neural network was presented by 
Saxe and Berlin [30]. The dataset for classification was 
binary which contains malware samples as benign or 
malicious. The features used were mostly static-like system 
library imports, ASCII format strings, metadata of the 

executable, and bytes sequence from raw code. These four 
features are then aggregated to produce a single 1024 
dimensional feature vector. After making a consolidated 
feature vector, the authors used the virus total online 
analysis portal to analyze the files and so the labeling which 
is malware. The experiments performed by the authors were 
performed on one of the largest datasets of 400,000 
software binaries with a detection rate of 95% and FPR of 
0.1. 

Tobiyama et al. [31] use process behavior as an API call 
sequence which represents the operations of the process. 
Features of process behavior are extracted to be used to train 
the RNN model. After training using RNN the features got 
transformed into feature vectors which then fed into CNN 
after transforming malware into images which gives the 
result of around 0.96 AUC score. 

George E. Dahl [32] worked on the malware 
classification with the main objective to minimize a large 
number of potential features. For this purpose different 
feature selection techniques like random projections can 
feed large data to the neural network system. The proposed 
solution achieved classification results with an error rate 
from 0.42%-0.49% in which an ensemble of neural 
networks gives a smaller error rate. 

Deep learning algorithms achieve greater accuracy for 
classification because of a higher number of diverse layers. 
Kolosnjaji [33] then achieved greater improvement in 
performance by modeling system calls sequence using the 
architecture with two combined computations of CNN and 
recurrent neural network. The result of using this 
architecture was that convolution of n-gram with full 
sequential modeling was achieved with hierarchical feature 
extraction. Using this architecture, 85.6% accuracy was 
achieved. 

In another advancement towards deep learning malware 
classification, Wenyi Huang [34] proposed the deep 
learning multi-task architecture for binary malware 
classification. The models were trained from data after 
dynamic analysis of malicious and benign files. The 
improvement was achieved on a very large dataset of 
around 4.5 million files which is one of the largest studies 
on malware classification. They also worked on the 
malware family classification architecture and then 
combined it with binary classification architecture to build 
multi-task architecture. 
Agarwal et al. [35] proposed the solution of malware 
classification using deep learning techniques which starts 
from parameter pre-processing in which the parameters 
associated with API calls are a very important aspect of 
malware behavior. Since the malware parameters can be of 
any format and values are also not specific. For this purpose, 
the author created the algorithm in which each malware 
after disassembling evaluates a tokenized sequence of 
characters which are then built into an n-gram sequence 
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based on characters and also frequency distribution These 
parameters helps the author to gain important information. 
This use of parameters was used in sequential models to 
evaluate vertical and horizontal relationships after deriving 
parameters embedding. After all these, the classification 
technique was the linear model with multi-layer 
architecture which contained the hidden dense RELu layers 
followed by the sigmoid layer. The experiment was 
performed on 75,000 files which were evenly distributed. 

2.5 Dynamic Analysis Approaches 

 Galal et al. [36] proposed a dynamic analysis 
method for the classification of malware. It uses a heuristic 
function that selects the sequence of API calls based on the 
API category created by the author, to create action traces. 
These action traces are converted into feature sets by 
extracting them into a benign and malign dataset which are 
then accumulated into a global action list. After this, every 
sample program is represented into a binary vector such that 
binary feature f is set to 1 if the sample has done any action 
otherwise 0. The dataset used in this work has 2000 samples 
from 50 different families. 

Pascanu [37] proposed a recurrent neural network 
solution to dynamically classify malware using a deep 
learning approach. Using this approach the author proposed 
an approach that was similar to natural language modeling 
using Echo State Network and Recurrent Neural Network 
to extract the features. After the projection stage using these 
RNN and ESN the max-pooling layer is also introduced to 
increase invariance and half-frame which increases the 
memory capacity of our final sequence representation. The 
dataset with around 297500 and 150000 samples was used 
for training and testing respectively which achieved an 
AUC of 95%.  

Yuan et al. [38] used a hybrid approach for malware 
analysis and applied a deep learning algorithm for the 
classification of malware. The author used the static 
analysis to extract sensitive API and required permissions 
by uncompressing the .apk file and parsing 
AndroidManifest .xml and classes.dex file. The 
AndroidManifest.xml file was used to get all the android 
permission and class.dex file was parsed to extract which 
API function is getting called. In the dynamic phase, the 
author installed and ran the application in DroidBox which 
is an android application sandbox that extends the 
TaintDroid hooking system. Using this sandboxing process 
the authors were able to analyze 13 different app functions 
and were able to obtain a total of 192 different features for 
each app. After generating features using static and dynamic 
analysis the author made an android deep-learning-based 
method (DroidDetector) which then gives the classification 
result for the app using an in-depth examination of the 
application along with additional information obtained from 
the analysis phase. Droid Detector deep learning methods 
were able to accomplish 96.7% classification accuracy. 

Chen et al. [39] uses dynamic analysis to detect 
ransomware as compared to static signature-based analysis 
which can easily be avoided using different obfuscation 
techniques. The author used the dynamic analysis technique 
with different data mining techniques like Random Forest, 
SVM, Naive Bayes, etc. The proposed architecture consists 
of the dynamic analysis part using API calls sequences 
which are monitored using software called API Monitor 
which analyzes the working of the application using API 
calls sequence and generates a call flow graph (CFG) to 
show the program flow and behavior. After feature 
extraction, the data normalization and feature selection are 
done using Correlation and Gain Ratio to improve the 
performance of the classifier by reducing the 
dimensionality and selecting the relevant features for model 
creation. For classification, different learning algorithms 
like SVM, Naive Bayes, Random Forest, and Simple 
Logistic with k-fold cross-validation were used on 168 
different ransomware samples using original and 
normalized data. After the experiment, the results provided 
by the author show better performance using a simple 
logistic algorithm with normalized data with 97.6% 
accuracy with the lowest false positive rate as compared to 
other classifiers. 
 

Alsulami et al. [40] introduced dynamic malware 
detection using the deep learning technique by generating a 
pre-fetch file of each malware which is a summary of the 
behavior of the windows-based application. For this 
experiment around 100000 malware samples were obtained 
from the malware repository which was then installed and 
executed into the virtual environment of windows 10 to 
collect the pre-fetch file of each malware sample.  

 
Kolosnjaji et al. [33] classified malware using dynamic 

analysis and by constructing a neural network based on a 
combination of the convolutional and recurrent networks to 
obtain the best features. The process of classification starts 
with the extraction of calls sequence of malware programs 
which are fetched by running the PE files in a virtual 
environment. 
 

Table 1: Advantage and Disadvantages of Dynamic Malware Analysis 

Advantages Disadvantages 

Detecting new types of 
malware attacks 

Storage complexity for behavioral 
patterns 

Dependency detector Time Complexity 

Detecting the 
polymorphic malwares 

Detected after the malware has 
infected the victim machine. 

 
The author used the one-hot encoding mechanism to 

create a feature vector of length equal to the number of 
distinct API calls. After preprocessing the author forwarded 
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the API calls vector into the proposed neural network in 
which a convolutional neural network is used for feature 
extraction by capturing the correlation between neighboring 
input vectors which are then fed into recurrent neural 
network layer explicitly model the sequential dependencies 
from the API traces. The layers are then followed by a mean 
pooling layer to extract the highly important features and 
then drop out a softmax layer is used to prevent overfitting 
and get label probabilities. The performance of this model 
was significant as compared to previous hybrid machine 
learning models with an overall accuracy of 95%. 

Xiao et al. [41] proposed the solution to dynamically 
identify malware in the IoT environment using behavior 
graph construction and SAE-based malware detection (deep 
learning method). In the proposed Solution the cloud 
platform transforms the program into a behavior graph 
using API calls that are then converted into binary vectors 
to be given as input to the SAE-based malware detection 
model. The cloud platform after collecting runtime 
activities creates a behavior graph or executes sample 
activities inside the cuckoo sandbox to extract API calls for 
malicious files which are categorized based on some 
predefined API calls. After the creation of a behavior graph 
from API calls the SAE model transforms it into a binary 
vector that uses one-hot encoding to identify unique 
behavior for every API call graph. The SAE model's main 
goal is to reduce the number of features and describe the 
features in compact high-level expression. The author 
experimented on 1760 samples in which the ratio of benign 
and malware samples was 50%. The experiment was 
conducted using different SAE-based deep learning 
algorithms and basic machine learning algorithms also but 
the SAE-based algorithm performed relatively well with the 
SAE-Decision tree algorithm achieving the precision of 
0.98 percent which is 1.5% better than the average precision 
of malware detection. 

2.6 Gaps found and Contributions 

The methods discussed above can be divided into 
classical and modern approaches. The classical approaches 
include graph-based and API call-based approaches which 
were compared and classified using signature-based 
approaches. These approaches were groundbreaking in the 
domain of malware detection and even getting used 
currently in new approaches. But the main drawback of 
using these classification approaches was the pattern 
creation and comparison complexity which impacts the 
computational efforts that were needed to perform these 
classical approaches. Keeping the computational drawback 
in mind, machine learning approaches were introduced 
basically to improve the performance of classification with 
algorithms like naive Bayes, SVM, decision tree, etc which 
gives robustness and scalability to classical approaches and 
identify unknown nor new malware easily. But the process 

of feature extraction in growing malware families was 
difficult. Due to new obfuscation and encryption techniques 
used by malware authors, it was very difficult to analyze 
new features automatically from files. 

To overcome this problem, new advanced 
convolutional neural network (CNN) based approaches 
were used which were mainly used to evaluate new features 
in scalable problems to identify new features in scalable 
problems for the identification of new malwares. These 
approaches include CNN architectures like SAE, RNN, etc. 
which were used for classification using multiple deep 
learning layers. The work done using CNN techniques was 
mostly using a static approach, as can be seen in Table 2,  
but due to increasing obfuscation and encryption/hiding 
techniques used by the author at runtime even deep learning 
approaches cannot correctly classify malware without a 
dynamic approach. 

In this research, we have used advanced CNN 
architecture like VGG-16, which are rarely used for 
malware classification problems but have got many 
recommendations by performing incredibly well with 
datasets of other domains. 

The other contribution of this paper is the use of 
classical approaches like opcode hashing for feature 
extraction and representation with modern approaches like 
deep learning in a dynamic environment. The combination 
of opcode sequence with image creation can perform well 
as images can detect small changes of code. The other work 
done in this research is the use of SimHash [21] technique 
for the creation of similarity comparison vectors which can 
improve similarity between hash vectors and the pattern to 
be created using grayscale images. 

The use of dynamically extracting features and using 
hashing techniques with images creation has been used for 
the first time and advanced new CNN architectures like 
VGG-16 which can perform quick robust classification 
tasks with high precision. Following are the main 
contributions of this paper. 

 
 

3. Methodology  
 

One of the major issues is to select the best opcode 
pairing to get features for classification. For this purpose, 
two different opcode generation methods will be used 
which will be compared later based on accuracy and 
relevancy in model classification. One of the opcode 
generation techniques is to create a series of opcodes and 
another one is to create a pair of two opcodes and then create 
opcode vectors for other processing for images. 

The malware represented in formats like vector and file 
for classification is useful in case of static analysis of 
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malware. To get a more detailed analysis of malware which 
is created in a way to change its representation during 
execution to be able to bypass detection mechanism, an 
image representation can help in identifying little changes 
in the malware and little pattern mismatch from different 
trained families of malware. 

The use of the deep learning approach is better to 
overcome the problem of the creation of different malware 
created daily as in deep learning architecture if the dataset 
increases the classifier performance typically keeps on 
increasing. In comparison, in the machine learning 
approach performance of the model stops improving with 
the increasing size of data. In case of any increase in the size 
of training data which causes the performance of deep 
learning networks to plateau, we can also increase the 
performance by increasing the capacity of the neural 
network by increasing the number of neurons or layers and 
repeating the continuously improving cycle. 

Table 2: Comparison of different work done with different Analysis, 
Feature extraction, and classification techniques 

Research 
work 

Analysis Features 
Extraction 

Classification Datasets 

Nataraj et 
al. [29] 

Static Greyscale 
Image 

KNN Large scale 
malware from 
VxHeaven and 
different 
sources 

Berlin et 
al. [30] 

Static PE import 
features 

DNN Samples from 
VirusTotal and 
private Repos 

Tobiyama 
et al. [31] 

Static API call 
sequence 

CNN Samples from 
different 
sources 

Dahl et al. 
[32] 

Static API call 
sequence 

DNN Samples from 
different 
sources 

Kolosnjaji 
et al. [33] 

Dynamic API call 
sequence 

CNN + RNN Samples from 
Virus Share, 
Maltrieve and 
private 
collections. 

Huang et 
al. [34] 

Dynamic API call 
sequence 

DNN Sample from 
Microsoft. 

Agarwal 
et al. [35] 

Static Opcode 
frequency 

ML + DNN Samples from 
Virustotal and 
Malicia-
Project 

Alsulami 
et al. [40] 

Dynamic Metadata RNN Samples from 
VirusShare 

Xaio et al. 
[41] 

Dynamic API call 
sequence 

SAE model 1760 samples 
files from Vx 
Heaven 

Kang et 
al. [39] 

Dynamic API call 
sequence 

ML Samples from 
private 
collection 

Pascanu et 
al. [37] 

Static + 
Dynamic 

API call 
sequence 

RNN Samples from 
private 
collection 

 
The other main problem due to the ever-increasing size 

and variation of malware format is to extract features that 
can be handled using our approach of using CNN 
architecture, in which different layers of the neural network 
are used to automatically learn features at different levels. 

 
3.1. Feature Extraction: 

3.1.1. Dynamic Disassembling 
Dynamic analysis is performed in a safe and virtual 

environment to observe the action and behavior performed 
by the file. To tackle the problem of obfuscation and 
packing of malware by malware authors the dynamic 
analysis is necessary to get analysis of malware while being 
executed. To get the analysis while running malware in a 
controlled environment cuckoo sandbox [42] will be used 
to disassemble malware and get opcode sequence. 

The process to perform this consists of three steps which 
are to disinfect the environment, then execute the malicious 
file, and then monitor logs and operation traces. To analyze 
the behavior as it would run on any computer the sandbox-
based tool Cuckoo is used by analyzing it automatically in 
a virtual environment. The PE (Program Executable) [43] 
files inserted for analysis can be monitored by analyzing 
function call monitoring or information flow tracking. 
These API functions can be divided into 6 different types 
based on the functionality which they can affect like 
network management, registry operations, 10 file operation, 
thread and processing, memory management, etc. To get 
access to the system resources such as file system, processes, 
windows registry, etc. the malicious files use API functions. 
To analyze the behavior, patterns and data flow from a 
malicious file, it is necessary to extract and analyze the 
results and inputs of API functions. By analyzing the 
malicious file dynamically, the API-call sequence can be 
traced from API functions which give us information about 
each step in which the file is affecting the system. 

The PE files which are used as input for malware 
classification contain several different headers and section 
parts. For disassembling the cuckoo sandbox environment 
will be used to trace API calls and find the behavior of the 
file. This cuckoo-based sandbox environment is useful to 
identify different malware which can change its patterns 
using different obfuscation techniques. The PE file which 
will be inserted into the sandbox environment consists of 
header and body sections of the file which is used to map 
the file into memory. During dynamic analysis using a 
sandbox environment, the OllyDbg v2 debugger will be 
used in a virtual machine to trace assembly calls to get the 
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opcode sequence at run time. This process gives a code 
section for each file to get the details of features that explain 
different operations that a PE file can perform if executed 
on the system. 

3.1.2 Feature Extraction 
After disassembling the next step is to extract opcode 

sequences which are like push, mov, lea, call, etc. These 
opcode sequences can be in a 1-tuple or 2-tuple opcode 
sequence [44]. One of the major issues is to select the best 

opcode pairing to get features for classification. For this 
purpose, 2 different opcode generation methods will be used 
which will be compared later based on accuracy and 
relevancy in model classification. One of the opcode 
generation techniques is to create a series of opcodes and 
another one is to create a pair of two opcodes and then create 
opcode vectors for other processing for images. 

Zhang et al. [45] using the IRMD algorithm generated 
the opcodes in a single sequence like push, lea, push, mov, 
call which gives more importance to all the features. Other 
techniques like 2-tuple opcode sequences <mov,mov> and 
<mov, call> are also used in the experiment to get the results 
and see the difference in images created using these 
sequences. 

After creating the opcode sequence the next step is to 
convert these opcodes into some meaningful values which 
can help in creating malware images. For this purpose, a 
new algorithm is used which creates a hash value of a given 
opcode sequence. This algorithm helps in comparing 
sequence similarity which is used to make sure that there is 
no collision between hash values. 

 
3.1.3 Binary Hash Conversion 
After creating an opcode sequence from one of the 

techniques, the next step is to generate a hash of these 
opcodes sequences. The hashing function used in the 
experiments is a variation of different sizes and types of 
Secure hashing algorithm (SHA)[46] which is used to 
generate secure data using a cryptographic technique by 
converting data that is given as input to fix the size string of 
numbers and alphabets using different operations like 
bitwise, modular addition and compression, etc. The 
different algorithms used in experiments are SHA-256, 

SHA-512[47], SHA-768, SHA-896, and SHA-1024 [48]. 
The difference between each encryption technique is the 
stronger encryption methods and the size of hash value 
generated increase as the number of SHA functions 
increases. 

One of the main reasons to use an SHA hash function is 
the ability to create totally different hash values even a 
slight change in the input value. In our experiments, the 
sequence of machine operation codes (opcodes) are created. 
The next step is to create the hash vector using one of the 
similarity comparison algorithms like SimHash [21]. The 
main reason for using a hashing algorithm to generate a 
hash vector is to make the comparison between repeated 
patterns of malware or similar malware because SimHash 
creates the same hash of similar malware. 

The algorithm which is used to create a hash of the 
malware files takes as input the series of opcode values and 
converts it into a binary vector to represent the file. The 
SimHash algorithm starts by converting all the opcodes into 
hash values. Based on these hash values weight vectors are 
generated for each hash code which is then added up to 
cumulative vectors which again get converted into binary 
vectors for the generation of grayscale images. 

The process of converting the opcode into a binary 
vector as defined in Fig. 1 including the first step in which 
the opcode sequences will be assigned to variables w which 
will be converted into n-bit binary hash values using the 
hash function. Now for each bit of hash value, if the bit is 1 
the value of the corresponding bit of SimHash is increased 
by 1 otherwise the value is decreased by 1. Now for 
converting the SimHash vector into a binary format, we 
have used the normalization technique and will set the value 
to 1 if the bit is greater than 1 or else set it to 0. 
 
 

3.2 Malware Image Generation 
After converting each malware sample into a hash 

value with equal length. The next step is to convert these 
hash values to images by converting each hash value into a 
pixel value. If the hash bit value is equal to 0 then the pixel 
value will be 0 and if the hash bit value is 1 then the pixel 
value will be 255. This conversion enables greyscale 
malware images [49] to be generated using which we can 
differentiate between different malware of different 
families as shown in Fig [figure number], a malware has 
different patterns between different families of malware. 

As shown in the binary array has been given as a 
parameter to function which will be converted into a proper 
NumPy array for further manipulations and changes using 
the NumPy library. After this, the array elements with the 
value of 1 will be replaced by 255 and the remaining 
elements will be 0 which is necessary for creating grayscale 
images. 

Fig 1: Algorithm process of SimHash 
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After changing the element values in the array the 
array will get reshaped to create a proper image that can be 
processed by the CNN model and patterns inside the image 
can also be observed. According to the size of the array 
which was 1600 because of using SHA-896 which produces 
hashes of length approximately 1600, the array will be 
reshaped into 40*40 which will create more sub-arrays due 
to which the image can be easily created depends upon our 
preferred size of the image. Here the standard malware 
images size of width=250 and height=250 is used which 
was used in many previous types of research using malware 
images [9]. 
 

3.3 Convolutional Neural Network 
The use of the deep learning approach is better to 

overcome the problem of the creation of different malware 
created daily as in deep learning architecture if the dataset 
increases the classifier performance typically keeps on 
increasing. In comparison, in the machine learning 
approach performance of the model stops improving with 
the increasing size of data. In case of any increase in the size 
of training data which causes the performance of deep 
learning networks to plateau, we can also increase the 
performance by increasing the capacity of the neural 
network by increasing the number of neurons or layers and 
repeat the continuously improving cycle. 

The other main problem due to the ever-increasing size 
and variation of malware format is to extract features that 
can be handled using our approach of using CNN 
architecture, in which different layers of the neural network 
are used to automatically learn features at different levels. 
The architecture that we have used has rarely been used in 
the domain of malware classification. Following is the CNN 
architecture used during experimentation. 

The architecture of our Convolutional Neural Network 
model is based on VGG-16[17] which is considered as one 
of the best performing architecture on ImageNet dataset 
competitions. The model is trained on more than a million 
images from the ImageNet database. In convolutional 
neural networks the three main layers which are used to 
make any architecture are fully connected, convolutional 
and pooling layers. The full overview of VGG-16 CNN 
architecture can be seen in figure.2. 

This network is characterized by its simplicity, using 
only 3×3 convolutional layers stacked on top of each other 
in increasing depth. Reducing volume size is handled by 
max pooling. Two fully connected layers, each with 4,096 
nodes are then followed by a softmax classifier. 

 

 

Fig 2: Detailed view of disassembly, feature extraction and image 
creation process 
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3.4 Proposed Solution for Malware Classification: 
The architecture of our proposed method is divided into 

5 parts, as can be seen in Fig 2.  The classification process 
starts from dynamic analysis using a cuckoo sandbox 
environment which will generate API call logs after running 
malware or benign files inside a virtual machine. After that, 
the opcode sequence is generated in a feature extraction 
module which is then converted into a unique value 
generated by different hash techniques applied on every 
word of the opcode. After generating hash for all values the 
SimHash function is applied which is used for generating 
similarity matrices which are then divided into right vector 
format for grayscale image generation which is then given 
as input to CNN algorithm for classification. 
 
3.5 Key Requirements 

3.5.1 Dataset 

The other samples used in this research were taken from 
VirusShare.com which contains a repository of malware PE 
files and also some windows PE files were used from our 
personal computers for experimentations. The other sources 
of the dataset were the benign executable (.exe) files of 
software setups taken from filehippo.com and various 
software downloading websites. The dataset consists of 500 
PE executable files which contain malwares of 5 different 
families which include Locker, Mediyes, Zbot, WinWebsec, 
and Zeroaccess. 

The malware was downloaded from the virus total after 
requesting the author to use their virus-infected executable 
files for research purposes which were given after some 
validation. 

3.5.2 Software Requirements. 

The malware disassembly has been done using 

 Cuckoo sandbox 

 PyCharm IDE 

 Python 2.7, 3.7 

 Virtual Box 
Software and the development of hash algorithms have been 
done using Python 3.7 on PyCharm IDE. 

The analysis using sandbox was done only on the 
Ubuntu 18.0 operating system with Windows 10 used as OS 
in virtual machines. The development of deep learning 
algorithms has also been done using python with additional 
Keras and Tensorflow libraries. 

 
3.5.3 Hardware Requirements 

During the research, many different hardware resources 
have been used for powerful training computation of deep 
learning algorithms on large datasets. For this purpose 

university computers with hardware specifications of Core 
i7 processor with 16GB RAM and 1070 T Nvidia GPU were 
used. Online cloud platforms like google colab, Google 
cloud were also used for training deep learning models. 

 
3.6 Evaluation Matrix 

The evaluation matrix used in the experiments is first to 
find the accuracy of the model after applying it with one of 
5 different hashing techniques and also to find accuracy 
after applying 1-gram, 2-gram, and 3-gram opcode 
sequence generation. Along with accuracy, the validation 
accuracy was also evaluated which tells us about how much 
accurate result our model will be able to give in case if new 
data is evaluated using the put model. 

The other evaluation factor which is used is log loss 
which gives us the factor of the uncertainty of our model 
based on predictions and tells us how much it will deviate 
from the actual labels. The same will be applied to the 
validation data and log loss will be evaluated for the 
validation set also. 

The other main evaluation matrix is the graph 
containing training and validation accuracy and loss sync 
graph which will show whether the model is not overfitting 
if the graph of training and validation accuracy keeps on 
increasing with sync readings and keeps on decreasing with 
sync readings. 

1. Results and Discussion 

For the conversion of opcode sequence into a binary 
form, the hashing technique was used in which several 
hashing functions were used like Sha256, Sha512, Sha768, 
Sha896, Sha1024. These hash functions created the 
difference in image creation as greater hash functions 
produced a greater length of binary number for image 
creation. As a result, the images created using greater hash 
functions were more complex and contained more patterns 
as compared to lower hash functions as can be seen in Fig 
3. 

 
Fig 3: Malware greyscale image samples using SHA-256, 

SHA-896 and SHA-1024 hashing 

4.1 Results with different Hash Functions 
The images created by different hash functions also 

affected the accuracy and log loss when applied to the 
Convolutional neural network model as can be seen in Table 
3a. As can be seen that the training accuracy increases as 
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the hashing algorithm of greater length are used. But the 
best result was given by the SHA-768 and SHA-1024 

hashing functions. 
Also, it can be seen from Fig 3 that greyscale images 

created after opcode hashing using these hashing function 
is different and as the length of output from hashing 
function increases with an increasing number of hash 
functions like SHA-1024 and SHA-896, the greyscale 
images generated are more complex and contain more 
patterns as compared to the lower length of hash functions. 

 

Table 3a: Results using different hash functions 

  
4.2 Results with different Opcode Sequence 

The difference in the accuracy of models was also 
observed due to the use of different opcode sequence 

methods. In this research, the 1-gram, 2-gram, and 3-gram 
opcode sequence methods were used and the difference in 
model performance shown in Table 3b. As can be seen, the 
model performed relatively well on a 3-gram opcode 
sequence. 

 
Table 3b: Results using different opcode sequences 

Opcode 
 Sequence 

Accuracy Validation- 
Accuracy 

Loss Validation- 
Loss 

Hash  

Functions 

Accuracy Validation 

Accuracy 

Loss Validation 

Loss 

Sha-256 0.9438 0.8625 0.1333 0.1945 

Sha-768 0.9607 0.9167 0.0887 0.1886 

Sha-896 0.9536 0.9167 0.1191 0.1737 

Sha-1024 0.9571 0.93338 0.1342 0.1699 

Figure 4: Training and validation accuracy and loss graph in sync with each other 

Fig 5: Similarity in pattern of same families 
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2-gram 0.9429 0.9000 0.14 0.2123 

3-gram 0.9679 0.9250 0.09 0.2076 

 
In Fig 4, we can see the training loss and accuracy using 

the SHA-256 hashing function is in sync with validation 
loss and accuracy. The validation loss and accuracy lines 
are not linear but it shows that the model is not overfitting 
because the validation loss is decreasing and not increasing 
and also accuracy is increasing for both validation and 
training data. Also, there is not much gap between training 
and validation accuracy. 

It is due to this similarity as can be seen in Fig. 5 and 
the difference between different malware family patterns 
that malware greyscale image can give much better results 
because obfuscation or cryptographic techniques to change 
the behavior of software will result in the creation of similar 
malware image with only few pixel changes. 

 
4.3 Results Using Hash Functions with opcode 

sequences 
i. 2-gram 
The images created by different hash functions also 

affected the accuracy and log loss when applied to the 
Convolutional neural network model as can be seen in the 
Table 4. As can be seen that the training accuracy increases 
when the hashing algorithms with greater length are used. 
But the best result was given by the SHA-768 and SHA-
1024 hashing functions. 

ii. 3-gram 
Also, the result of a 3-gram opcode sequence with 

different hash functions can be seen in Table 5. According 
to the result, the CNN model performs best when used with 
Sha-256 and Sha-768 techniques based on accuracy and 
loss. 

The performance evaluated from 2-gram and 3-gram 
opcode sequences show us that lower n-gram sequence 
gives best results with a high number of hashing techniques 
and greater n-gram sequences give better result with lower 
hash functions. 

iii. VGG-16 Model: 
As shown in Table 6, SHA-768 performed better when 

applied on VGG-16 model for classification with an input 
size of 150 x 150 (width x height) as compared to other sizes. 

 

Table 4: Results using different hash functions with 2-gram 
opcode sequence 

Hash 
Function 

Accuracy Validation 
Accuracy 

Loss Validation- 
Loss 

Sha-256 0.9536 0.8833 0.122 0.2435 

Sha-768 0.9464 0.9000 0.142 0.2478 

Sha-896 0.9286 0.9083 0.136 0.2275 

Sha-1024 0.9179 0.8917 0.157 0.1990 

 

Table 5: Results using different hash functions with 3-gram 
opcode sequence 

Hash  
Function 

Accuracy Validation- 
Accuracy 

Loss Validation- 
Loss 

Sha-256 0.9679 0.9333 0.1021 0.1966 

Sha-768 0.9607 0.9250 0.0987 0.1916 

Sha-896 0.9357 0.9167 0.1374 0.2311 

Sha-1024 0.9429 0.8833 0.1193 0.2747 
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Table 6: Results using different hash functions with 3-gram 
opcode sequence 

Accuracy Loss Validation  
Accuracy 

Validation  
Loss 

Input 
Size 

0.9594 0.1483 0.9000 0.1920 150,150 

0. 8375 0.4525 0. 8750 0.5179 28,28 

 

 

2.  Limitations 

Learning of good robust features is an active area of 
research in AI. For malware detection, the hope for these 
techniques is that they will be less prone to the time drift 
problem. With an increase in the size of a dataset, the size 
of the deep learning model (CNN) also increases which 
becomes very complex and computationally very hard for 
the system to compute malware on CNN techniques. This 
requires powerful hardware with more GPUs. 

As malware analysis technologies become known, 
malware authors begin to utilize anti-analysis techniques, 
which include anti-virtualization and anti-debugging, to 
detect and disturb the analysis [6]. A study has shown that 
deploying a decoy executable in online dynamic malware 
sandbox analysis systems for analysis can provide 
information to the attacker about the analysis system. A new 
technique called Decoy Sample Injection (DSI), which can 
be conducted against a public malware analysis system 
using an Internet-connected sandbox. The technique points 
out that IP addresses of Internet-connected sandboxes in the 
public malware sandbox analysis systems which can be 
disclosed by an attacker who submits a decoy sample 
designed for this purpose. The disclosed address can then 
be shared among attackers as a blacklist to detect and 
disturb the analysis. 

 

3. Future Work 

With these feature extraction techniques performing 
relatively different than other techniques in the greyscale 
generation, they can be further used with other hashing 
similarity techniques like cosine similarity, sketching 
algorithms to check differences with our proposed approach. 
One advantage of using deep learning is that it can also tell 

us which portions of a file are malicious by looking at 
receptive fields of neurons that get activated. This opens the 
possibility of a malware analyst using deep learning as a 
tool to assist in the task of classifying difficult cases. This 
could also lead to finding out the specific purpose or 
specific data that the malware is intended to carry out from 
a specific system which can allow the antimalware 
stakeholders to take necessary security measures and 
modify antimalware software according to the specific 
problem which the organization is facing rather than having 
general standards and rules set to analyze and classify 
malware. 
 

4. Conclusion 

 

In this paper, we have introduced the malware 
classification framework with dynamic analysis and using 
different hashing techniques and opcode sequences to 
generate varying patterns of malware images with different 
complexity and got different accuracies in which SHA-768 
gave the best performance and 3-gram opcode sequence 
gave us better results as compared to 1-gram and 2-gram 
sequences. Also, we applied these images generated by 
SHA-768 to VGG-16 using which we got the best accuracy 
of 96% with greater image size. 
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