
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

49

Manuscript received August 5, 2023
Manuscript revised August 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.8.7

Malware Classification using Dynamic Analysis with Deep Learning

Asad Amin, Muhammad Nauman Durrani, Nadeem Kafi, Fahad Samad, Abdul Aziz
k173066@nu.edu.pk , muhammad.nouman@nu.edu.pk , nadeem.kafi@nu.edu.pk , fahad.samad@nu.edu.pk, abdulaziz@nu.edu.pk

FAST-National University of Computer and Emerging Sciences, Pakistan

Abstract
There has been a rapid increase in the creation and alteration of
new malware samples which is a huge financial risk for many
organizations. There is a huge demand for improvement in
classification and detection mechanisms available today, as some
of the old strategies like classification using mac learning
algorithms were proved to be useful but cannot perform well in the
scalable auto feature extraction scenario. To overcome this there
must be a mechanism to automatically analyze malware based on
the automatic feature extraction process. For this purpose, the
dynamic analysis of real malware executable files has been done
to extract useful features like API call sequence and opcode
sequence. The use of different hashing techniques has been
analyzed to further generate images and convert them into image
representable form which will allow us to use more advanced
classification approaches to classify huge amounts of images using
deep learning approaches. The use of deep learning algorithms like
convolutional neural networks enables the classification of
malware by converting it into images. These images when fed into
the CNN after being converted into the grayscale image will
perform comparatively well in case of dynamic changes in
malware code as image samples will be changed by few pixels
when classified based on a greyscale image. In this work, we used
VGG-16 architecture of CNN for experimentation.
Keywords:
Malware Classification, SimHash, Hashing, Opcodes, Deep
Learning Models, CNN, VGG 16.

1. Introduction

Malicious or malware software is a major problem in
modern-day computing devices, especially containing the
data. Many anti-malware (anti-virus) softwares detect and
delete malwares from the computer but the malwares
nowadays are programmed in such a way that it can mutate
itself to attack again without being detected by the anti-
malware software. The creation of new types of malware on
daily basis is affecting many companies and organizations
financially and also affecting many individual user's
security which was also reported by McAfee's annual report
[1]. However, there are reverse engineering procedures like
signature-based or heuristics-based detection and analysis
but the creation of different unique versions of the same
malware using different polymorphic and metamorphic
algorithms [2] make it difficult to automate the reverse
engineering procedures using these techniques.

Malware is one of the major challenges to Internet
security. The report from Symantec in 2016 claimed that

more than 430 million unique malware were discovered in
2015[3]. Today, malware is increasing with many different
patterns and new families for different malign purposes.
The purpose of malware is to interrupt the flow of normal
operations, gather sensitive data or information. Many types
of malware are divided according to their functionality and
purpose. Some of the types are backdoor worms, Spyware,
Adware, Rootkit, Trojan-horse, etc. The history of malware
starts from the 1970s when the malware was used to spread
offline using Floppy Disks and other external devices. As
the age of networks and the internet matured in the late 90s,
the malware authors used this platform to quickly transfer
malware from one computer to many different systems. The
malware types varied from email worms to rootkit and SQL
injections became one of the popular types to infiltrate and
take advantage of the lack of security protocols in many
websites. After 2010, there is a significant evolution in the
sophistication and power of malware which is being
developed by authors to bypass many anti-malware systems
and also used to attack many government institutes and the
type of malware grew rapidly with the growth in
ransomware and illegal schemes. Today, many unique
malwares are getting created at a rapid speed using
techniques that allow malwares to be not detected by classic
signature-based or heuristic-based techniques [4].

Different detection techniques were introduced, which
include signature-based malware detection. These
techniques try to match the unique signature of malware,
and also behavioral/pattern-based malware detection [5].
This requires the malware to be detected in a runtime
environment or virtual environment that is more time and
resource-consuming. Also, these approaches were later
exploited by malware makers by making malicious
software more dynamic and unique each time with new
attacks which makes it impossible for these methods to
detect malware.

With the introduction of machine learning approaches
[10] in many domains, malware detection also benefits by
quickly detecting using fewer resources than previous
techniques. The different algorithms that are used for this
purpose require efficient feature extraction techniques to be
used based on the classification algorithm used for the
problem. Malware authors have now developed different
techniques to bypass anti-malware software like packing,
encryption, or obfuscation techniques [6]. As obfuscation
techniques became more popular, the dynamic analysis of

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

50

malware became necessary to get rid of this type of
malware. As dynamic analysis executes malware in a
sandbox virtual environment to get traces of its behavior. It
allows the classification model to detect malware based on
its behavior similarity between new and known ones. Now
to circumvent this advancement the malware author inserts
meaningless codes or tries to shuffle the sequence of
programs [8]. To get rid of these changes to create new
variants of the same malware family, the use of malware in
the form of grayscale images [9] can be used. As malware
code changes small parts of the original source code to
produce a new variant of malware, images can capture small
changes yet retain the global structure. Hence, using images
we can detect samples belonging to the same family because
they appear very similar to the captured image and the
image structure.

Previously for the new changes in malware creation, the
machine learning algorithms became popular for malware
detection. These machine learning approaches are based on
heuristic feature engineering which is expensive and un-
scalable [36]. A lot of effort is spent in feature engineering,
which requires domain expertise to know the characteristics
that make the objects belong to different categories of
malware. Also because of constant evolution and changes
in patterns of malware using different obfuscation
techniques, these machine learning algorithms faced a drift
problem due to lack of ability to understand features
automatically [10]. Further, these algorithms were unable to
maintain good accuracy by increasing the number of
datasets and variations. For the domain of malware
classification, advanced machine learning techniques based
on AI, specifically deep learning. The main reason for using
the deep learning approach was the more robust and
scalable approach of these techniques, as the architecture of
deep learning algorithms are designed in a way that it can
easily be extended for the new data because the use of
neurons and layers in the deep learning architecture can
easily be increased by increasing the number of arguments
in the code methods [11].

For this problem, many machine learning algorithms
have been utilized for a variety of malware samples.
Different researchers have used different techniques of
machine learning like Hidden Markov Models were used to
model system call sequences [12], Support Vector Machine
and random forest trees were used for different feature
extraction techniques [13][14]. Several other machine
learning algorithms were also used for malware detection
but the main problem is that many of these algorithms are
based on domain knowledge of malwares and its feature
analysis. Many researchers used feature engineering, where
features are used to train a machine learning model to
classify and make decisions but due to the change in the
malware type from the existing types (and hence features),
these models are unable to classify the new malware based
on the modified features. This results in miss classification.

To reduce the inefficiency of feature engineering in a
constantly changing feature environment and to extract
useful information from raw data and enable models to be
able to self-learn new features to improve malware
classification is our main focus.

Deep learning models have shown great results with
rapid improvements in areas like object recognition, speech
recognition [15]. It uses the neural network architecture
which consists of many hidden layers to learn new features
of the training set. As compared to traditional approaches,
we have used Convolutional Neural Network [16] approach
which has not been explored by many researchers for
malware classification problems. CNN performed well in
different problems related to image classification like image
recognition. For this purpose, the malware files were
converted into greyscale images, later on, used to train the
CNN model. The main advantage of classifying malware
based on images is that the malwares of the same family are
similar in visualization that helps in identifying different
variants by comparing few pixel changes of the same family
which was difficult to identify using previous approaches.

There is a huge demand for improvement in malware
classification and detection mechanisms as malwares now
can affect computers without getting identified using
different obfuscation techniques. For this purpose, the
dynamic malware analysis is used to detect the changed
behavior of malware by running the malware inside a virtual
sandbox environment [7] called cuckoo. Malware
Classification has been a very famous research topic
because of many gaps that still exist in classification
techniques. After many problems from different domains
are being applied on deep learning architecture for better
accuracy and scalable solutions, the malware classification
problem has also been applied on different CNN
architectures, but not much work has been done on more
robust and new architectures like VGG-16 [17]. Some of the
work was found using malware classification with deep
learning algorithms using static analysis [19], because of
easier conversion of already prepared binaries into images.

In this research, the dynamic analysis is done not only
on already prepared malware files collection but also on
generally available files from personal computers to test the
model for all types of datasets. The behavior of malware
files after getting identified from the sandbox environment
in the form of API system calls [20] will be converted into
an opcode sequence. This allows us to develop a mechanism
that can represent the useful features of malware in a way
that it can be represented to automatically analyze small
changes. The SimHash hashing [21] techniques used
previously have been used to get more weight of important
features as the hashing technique is a very important part of
the conversion of malware into useful grayscale images.

The paper is organized as follows: Section 2 is the
literature review, Section 3 explains the methodology, and

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

51

results are presented and discussed in Section 4. Section 5
concludes the paper and specifies the future work.

2. Literature

Much work has been done for malware classification
using the classical signature and heuristic-based
approaches. Also, some of the machine learning approaches
have been used for classification but the latest work is being
done using deep learning algorithms to get better results
using images.

2.1 Graph-Based Approaches

T. Wuchner et al. [22] introduced a compression-based
graph mining technique for dynamic malware detection
which scans unknown graphs for characteristics of malware
behavior patterns and compares it with the repository of
already labeled malign patterns. The approach followed by
the author is to first retrieve data under the sandbox
environment by identifying the system call traces for each
program sample and convert that system calls into a
quantitative data flow graph. After data retrieval, the
subgraphs are extracted from QDFGs to identify the pattern
which is then stored in a repository to capture the basic
pattern of known malwares. Now to train the classifier the
author used the mined patterns on the training set and
recorded which sub-pattern belongs to malware and benign
software respectively. This helps classifiers understand
different relationships of mined patterns. Now to identify
the new malware- whether it is malign or benign the
program sample has to through the same step to generates
subgraphs (pattern), after that the QDFGs of this unknown
sample is matched with previously generated detection
patterns which are then converted into a feature vector using
the same process used for generating training feature.
Finally, this test feature vector is then passed to the
classifier which results in the classification of the sample
test program as malware or benign software.

2.2 API call Analysis Approach

Youngjoon Ki et al [23] worked on dynamic analysis
techniques using the API call analysis. For this purpose, the
Detours hooking library was used to trace the API call
sequence of malware under a virtual environment which is
a hooking library used to intercept the call sequence to
target function and provide a user to insert a detour function
to analyze the API calls between the start and completion of
the program. The tracing of API calls is done using 23,080
malware samples. For creating the signature of API call
sequence all API call sequences which are labeled as
malware are extracted and stored in the database along with
multiple sequence alignment which helps in finding out the

longest common sequence. After that in the dynamic
analysis process, the call sequence of a randomly generated
program is compared with the signature and longest
common sequence of malware program APIs which were
stored in the database.

Alazab et al. [50] provide a major improvement in
detecting zero-day malware by improving the efficiency of
previous zero-day classification techniques. The author
classified zero-day malware with high levels of accuracy
and efficiency based on the frequency of Windows API
calls after disassembling the malware file which is then
stored into a signature database after passing through
similarity measures to generate similarity reports. After
that, the mutual information-based maximum relevance
filter is applied to get the ranking of API functions to get
relevant features before being given as input to the training
classifier. Using Naive Bayes and KNN, they got 98.5 %
accuracy with less than 0.25 FPR.

Iwamoto et al. [51] worked on a simple classification
methodology to compare the pairs of consecutive API calls
which are maintained using a graph data structure. They are
then compared with the executable API calls, already
identified as malware to determine the similarity using the
dice coefficient. The similarity matrix produced by the
analysis system considers many features using modules like
control flow analyzer, API call extractor, etc. To analyze the
similarity factor of the malware files the hierarchical cluster
analysis is done to do visualization using similarity values.

2.3 Machine Learning Approaches

 Schultz et al. [24] mainly used some static features like
PR head, sequence of string, and sequence of bytes. Also,
different methods like signature-based were used to
differentiate malicious executables from one another. A
ripper method [25] was used as a rule creation algorithm
and Naive Bayes and Muti Naive Bayes were used as a
learning algorithm that helped in obtaining classification
accuracy of 97.11%. These data mining methods at that time
doubled the decision rates for new malicious executables.

A much better result was then achieved by Kolter and
Maloof et al. [26] by using a byte code of N-gram as a
feature. Different types of machine learning algorithms like
SVM, Decision Trees algorithms, and boosting were used
with features selected as the most important n-grams for
classification. Among all the methods the decision tree gave
better results with a ROC curve of 0.996.

A new method was introduced to detect the malware which
is unknown or not based on the signature-based method
which was used previously [4][7][39]. This method was
based on the frequency of operational codes which was
introduced along with classification algorithms like KNN,

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

52

Bayesian Network, SVM and it gives the 92.2%
frequency with one opcode and 95.90% frequency with two
opcode sequence lengths. This method was a major step
towards the dynamic identification of malware, which
mostly occurs using different code obfuscation techniques.

Shabtai et al. [24] introduced a new feature extraction
technique called OpCode n-gram patterns. The opcode
sequence was obtained after disassembling process of
malware file and analyzing it which methods like Document
frequency, G-mean, using this technique many learning
algorithms like SVM, logistic regression, naive Bayes,
random forest was used but the most frequency of 95.14%
was obtained using Random Forest [14].

The major advancement in malware classification came
after the Microsoft Kaggle challenge with a dataset of
malwares in hex and assembly code format. For this format
of malware, many features were used which were
introduced by Ahmedi et al. [28] including image
representation and entropy methods. These features are then
combined using feature fusion techniques which combine
all the feature categories sequentially in a single feature
vector to be able to run a classifier on them which then gives
the accuracy of 99.8% using the XGBoost classification
algorithm. To overcome the difficulty of correct feature
extraction the deep learning algorithm performed this task
with more efficiency without analyzing the data available
before running classification tasks. Following is the
research work on malware classification carried out using
deep learning algorithms.

2.4 Deep Learning Approaches

The first step towards a deep learning model for
malware classification was taken by Nataraj et al. [29]. The
authors came up with the approach of visualizing and
classifying greyscale images using image processing
techniques. The classification was made based on the
observation that images from the same malware family have
the same type of texture and sequence of pixels in images.
In this research, they represented images in the range of 0-
255 (black-white) and observed that the obtained image
presented different sections of information about malware.
The main breakthrough of this research was that there was
no need for disassembly or code execution for classification
and image features were computed using GIST descriptor
and KNN for classification.

A deep feed-forward neural network was presented by
Saxe and Berlin [30]. The dataset for classification was
binary which contains malware samples as benign or
malicious. The features used were mostly static-like system
library imports, ASCII format strings, metadata of the

executable, and bytes sequence from raw code. These four
features are then aggregated to produce a single 1024
dimensional feature vector. After making a consolidated
feature vector, the authors used the virus total online
analysis portal to analyze the files and so the labeling which
is malware. The experiments performed by the authors were
performed on one of the largest datasets of 400,000
software binaries with a detection rate of 95% and FPR of
0.1.

Tobiyama et al. [31] use process behavior as an API call
sequence which represents the operations of the process.
Features of process behavior are extracted to be used to train
the RNN model. After training using RNN the features got
transformed into feature vectors which then fed into CNN
after transforming malware into images which gives the
result of around 0.96 AUC score.

George E. Dahl [32] worked on the malware
classification with the main objective to minimize a large
number of potential features. For this purpose different
feature selection techniques like random projections can
feed large data to the neural network system. The proposed
solution achieved classification results with an error rate
from 0.42%-0.49% in which an ensemble of neural
networks gives a smaller error rate.

Deep learning algorithms achieve greater accuracy for
classification because of a higher number of diverse layers.
Kolosnjaji [33] then achieved greater improvement in
performance by modeling system calls sequence using the
architecture with two combined computations of CNN and
recurrent neural network. The result of using this
architecture was that convolution of n-gram with full
sequential modeling was achieved with hierarchical feature
extraction. Using this architecture, 85.6% accuracy was
achieved.

In another advancement towards deep learning malware
classification, Wenyi Huang [34] proposed the deep
learning multi-task architecture for binary malware
classification. The models were trained from data after
dynamic analysis of malicious and benign files. The
improvement was achieved on a very large dataset of
around 4.5 million files which is one of the largest studies
on malware classification. They also worked on the
malware family classification architecture and then
combined it with binary classification architecture to build
multi-task architecture.
Agarwal et al. [35] proposed the solution of malware
classification using deep learning techniques which starts
from parameter pre-processing in which the parameters
associated with API calls are a very important aspect of
malware behavior. Since the malware parameters can be of
any format and values are also not specific. For this purpose,
the author created the algorithm in which each malware
after disassembling evaluates a tokenized sequence of
characters which are then built into an n-gram sequence

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

53

based on characters and also frequency distribution These
parameters helps the author to gain important information.
This use of parameters was used in sequential models to
evaluate vertical and horizontal relationships after deriving
parameters embedding. After all these, the classification
technique was the linear model with multi-layer
architecture which contained the hidden dense RELu layers
followed by the sigmoid layer. The experiment was
performed on 75,000 files which were evenly distributed.

2.5 Dynamic Analysis Approaches

 Galal et al. [36] proposed a dynamic analysis
method for the classification of malware. It uses a heuristic
function that selects the sequence of API calls based on the
API category created by the author, to create action traces.
These action traces are converted into feature sets by
extracting them into a benign and malign dataset which are
then accumulated into a global action list. After this, every
sample program is represented into a binary vector such that
binary feature f is set to 1 if the sample has done any action
otherwise 0. The dataset used in this work has 2000 samples
from 50 different families.

Pascanu [37] proposed a recurrent neural network
solution to dynamically classify malware using a deep
learning approach. Using this approach the author proposed
an approach that was similar to natural language modeling
using Echo State Network and Recurrent Neural Network
to extract the features. After the projection stage using these
RNN and ESN the max-pooling layer is also introduced to
increase invariance and half-frame which increases the
memory capacity of our final sequence representation. The
dataset with around 297500 and 150000 samples was used
for training and testing respectively which achieved an
AUC of 95%.

Yuan et al. [38] used a hybrid approach for malware
analysis and applied a deep learning algorithm for the
classification of malware. The author used the static
analysis to extract sensitive API and required permissions
by uncompressing the .apk file and parsing
AndroidManifest .xml and classes.dex file. The
AndroidManifest.xml file was used to get all the android
permission and class.dex file was parsed to extract which
API function is getting called. In the dynamic phase, the
author installed and ran the application in DroidBox which
is an android application sandbox that extends the
TaintDroid hooking system. Using this sandboxing process
the authors were able to analyze 13 different app functions
and were able to obtain a total of 192 different features for
each app. After generating features using static and dynamic
analysis the author made an android deep-learning-based
method (DroidDetector) which then gives the classification
result for the app using an in-depth examination of the
application along with additional information obtained from
the analysis phase. Droid Detector deep learning methods
were able to accomplish 96.7% classification accuracy.

Chen et al. [39] uses dynamic analysis to detect
ransomware as compared to static signature-based analysis
which can easily be avoided using different obfuscation
techniques. The author used the dynamic analysis technique
with different data mining techniques like Random Forest,
SVM, Naive Bayes, etc. The proposed architecture consists
of the dynamic analysis part using API calls sequences
which are monitored using software called API Monitor
which analyzes the working of the application using API
calls sequence and generates a call flow graph (CFG) to
show the program flow and behavior. After feature
extraction, the data normalization and feature selection are
done using Correlation and Gain Ratio to improve the
performance of the classifier by reducing the
dimensionality and selecting the relevant features for model
creation. For classification, different learning algorithms
like SVM, Naive Bayes, Random Forest, and Simple
Logistic with k-fold cross-validation were used on 168
different ransomware samples using original and
normalized data. After the experiment, the results provided
by the author show better performance using a simple
logistic algorithm with normalized data with 97.6%
accuracy with the lowest false positive rate as compared to
other classifiers.

Alsulami et al. [40] introduced dynamic malware
detection using the deep learning technique by generating a
pre-fetch file of each malware which is a summary of the
behavior of the windows-based application. For this
experiment around 100000 malware samples were obtained
from the malware repository which was then installed and
executed into the virtual environment of windows 10 to
collect the pre-fetch file of each malware sample.

Kolosnjaji et al. [33] classified malware using dynamic

analysis and by constructing a neural network based on a
combination of the convolutional and recurrent networks to
obtain the best features. The process of classification starts
with the extraction of calls sequence of malware programs
which are fetched by running the PE files in a virtual
environment.

Table 1: Advantage and Disadvantages of Dynamic Malware Analysis

Advantages Disadvantages

Detecting new types of
malware attacks

Storage complexity for behavioral
patterns

Dependency detector Time Complexity

Detecting the
polymorphic malwares

Detected after the malware has
infected the victim machine.

The author used the one-hot encoding mechanism to

create a feature vector of length equal to the number of
distinct API calls. After preprocessing the author forwarded

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

54

the API calls vector into the proposed neural network in
which a convolutional neural network is used for feature
extraction by capturing the correlation between neighboring
input vectors which are then fed into recurrent neural
network layer explicitly model the sequential dependencies
from the API traces. The layers are then followed by a mean
pooling layer to extract the highly important features and
then drop out a softmax layer is used to prevent overfitting
and get label probabilities. The performance of this model
was significant as compared to previous hybrid machine
learning models with an overall accuracy of 95%.

Xiao et al. [41] proposed the solution to dynamically
identify malware in the IoT environment using behavior
graph construction and SAE-based malware detection (deep
learning method). In the proposed Solution the cloud
platform transforms the program into a behavior graph
using API calls that are then converted into binary vectors
to be given as input to the SAE-based malware detection
model. The cloud platform after collecting runtime
activities creates a behavior graph or executes sample
activities inside the cuckoo sandbox to extract API calls for
malicious files which are categorized based on some
predefined API calls. After the creation of a behavior graph
from API calls the SAE model transforms it into a binary
vector that uses one-hot encoding to identify unique
behavior for every API call graph. The SAE model's main
goal is to reduce the number of features and describe the
features in compact high-level expression. The author
experimented on 1760 samples in which the ratio of benign
and malware samples was 50%. The experiment was
conducted using different SAE-based deep learning
algorithms and basic machine learning algorithms also but
the SAE-based algorithm performed relatively well with the
SAE-Decision tree algorithm achieving the precision of
0.98 percent which is 1.5% better than the average precision
of malware detection.

2.6 Gaps found and Contributions

The methods discussed above can be divided into
classical and modern approaches. The classical approaches
include graph-based and API call-based approaches which
were compared and classified using signature-based
approaches. These approaches were groundbreaking in the
domain of malware detection and even getting used
currently in new approaches. But the main drawback of
using these classification approaches was the pattern
creation and comparison complexity which impacts the
computational efforts that were needed to perform these
classical approaches. Keeping the computational drawback
in mind, machine learning approaches were introduced
basically to improve the performance of classification with
algorithms like naive Bayes, SVM, decision tree, etc which
gives robustness and scalability to classical approaches and
identify unknown nor new malware easily. But the process

of feature extraction in growing malware families was
difficult. Due to new obfuscation and encryption techniques
used by malware authors, it was very difficult to analyze
new features automatically from files.

To overcome this problem, new advanced
convolutional neural network (CNN) based approaches
were used which were mainly used to evaluate new features
in scalable problems to identify new features in scalable
problems for the identification of new malwares. These
approaches include CNN architectures like SAE, RNN, etc.
which were used for classification using multiple deep
learning layers. The work done using CNN techniques was
mostly using a static approach, as can be seen in Table 2,
but due to increasing obfuscation and encryption/hiding
techniques used by the author at runtime even deep learning
approaches cannot correctly classify malware without a
dynamic approach.

In this research, we have used advanced CNN
architecture like VGG-16, which are rarely used for
malware classification problems but have got many
recommendations by performing incredibly well with
datasets of other domains.

The other contribution of this paper is the use of
classical approaches like opcode hashing for feature
extraction and representation with modern approaches like
deep learning in a dynamic environment. The combination
of opcode sequence with image creation can perform well
as images can detect small changes of code. The other work
done in this research is the use of SimHash [21] technique
for the creation of similarity comparison vectors which can
improve similarity between hash vectors and the pattern to
be created using grayscale images.

The use of dynamically extracting features and using
hashing techniques with images creation has been used for
the first time and advanced new CNN architectures like
VGG-16 which can perform quick robust classification
tasks with high precision. Following are the main
contributions of this paper.

3. Methodology

One of the major issues is to select the best opcode
pairing to get features for classification. For this purpose,
two different opcode generation methods will be used
which will be compared later based on accuracy and
relevancy in model classification. One of the opcode
generation techniques is to create a series of opcodes and
another one is to create a pair of two opcodes and then create
opcode vectors for other processing for images.

The malware represented in formats like vector and file
for classification is useful in case of static analysis of

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

55

malware. To get a more detailed analysis of malware which
is created in a way to change its representation during
execution to be able to bypass detection mechanism, an
image representation can help in identifying little changes
in the malware and little pattern mismatch from different
trained families of malware.

The use of the deep learning approach is better to
overcome the problem of the creation of different malware
created daily as in deep learning architecture if the dataset
increases the classifier performance typically keeps on
increasing. In comparison, in the machine learning
approach performance of the model stops improving with
the increasing size of data. In case of any increase in the size
of training data which causes the performance of deep
learning networks to plateau, we can also increase the
performance by increasing the capacity of the neural
network by increasing the number of neurons or layers and
repeating the continuously improving cycle.

Table 2: Comparison of different work done with different Analysis,
Feature extraction, and classification techniques

Research
work

Analysis Features
Extraction

Classification Datasets

Nataraj et
al. [29]

Static Greyscale
Image

KNN Large scale
malware from
VxHeaven and
different
sources

Berlin et
al. [30]

Static PE import
features

DNN Samples from
VirusTotal and
private Repos

Tobiyama
et al. [31]

Static API call
sequence

CNN Samples from
different
sources

Dahl et al.
[32]

Static API call
sequence

DNN Samples from
different
sources

Kolosnjaji
et al. [33]

Dynamic API call
sequence

CNN + RNN Samples from
Virus Share,
Maltrieve and
private
collections.

Huang et
al. [34]

Dynamic API call
sequence

DNN Sample from
Microsoft.

Agarwal
et al. [35]

Static Opcode
frequency

ML + DNN Samples from
Virustotal and
Malicia-
Project

Alsulami
et al. [40]

Dynamic Metadata RNN Samples from
VirusShare

Xaio et al.
[41]

Dynamic API call
sequence

SAE model 1760 samples
files from Vx
Heaven

Kang et
al. [39]

Dynamic API call
sequence

ML Samples from
private
collection

Pascanu et
al. [37]

Static +
Dynamic

API call
sequence

RNN Samples from
private
collection

The other main problem due to the ever-increasing size

and variation of malware format is to extract features that
can be handled using our approach of using CNN
architecture, in which different layers of the neural network
are used to automatically learn features at different levels.

3.1. Feature Extraction:

3.1.1. Dynamic Disassembling
Dynamic analysis is performed in a safe and virtual

environment to observe the action and behavior performed
by the file. To tackle the problem of obfuscation and
packing of malware by malware authors the dynamic
analysis is necessary to get analysis of malware while being
executed. To get the analysis while running malware in a
controlled environment cuckoo sandbox [42] will be used
to disassemble malware and get opcode sequence.

The process to perform this consists of three steps which
are to disinfect the environment, then execute the malicious
file, and then monitor logs and operation traces. To analyze
the behavior as it would run on any computer the sandbox-
based tool Cuckoo is used by analyzing it automatically in
a virtual environment. The PE (Program Executable) [43]
files inserted for analysis can be monitored by analyzing
function call monitoring or information flow tracking.
These API functions can be divided into 6 different types
based on the functionality which they can affect like
network management, registry operations, 10 file operation,
thread and processing, memory management, etc. To get
access to the system resources such as file system, processes,
windows registry, etc. the malicious files use API functions.
To analyze the behavior, patterns and data flow from a
malicious file, it is necessary to extract and analyze the
results and inputs of API functions. By analyzing the
malicious file dynamically, the API-call sequence can be
traced from API functions which give us information about
each step in which the file is affecting the system.

The PE files which are used as input for malware
classification contain several different headers and section
parts. For disassembling the cuckoo sandbox environment
will be used to trace API calls and find the behavior of the
file. This cuckoo-based sandbox environment is useful to
identify different malware which can change its patterns
using different obfuscation techniques. The PE file which
will be inserted into the sandbox environment consists of
header and body sections of the file which is used to map
the file into memory. During dynamic analysis using a
sandbox environment, the OllyDbg v2 debugger will be
used in a virtual machine to trace assembly calls to get the

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

56

opcode sequence at run time. This process gives a code
section for each file to get the details of features that explain
different operations that a PE file can perform if executed
on the system.

3.1.2 Feature Extraction
After disassembling the next step is to extract opcode

sequences which are like push, mov, lea, call, etc. These
opcode sequences can be in a 1-tuple or 2-tuple opcode
sequence [44]. One of the major issues is to select the best

opcode pairing to get features for classification. For this
purpose, 2 different opcode generation methods will be used
which will be compared later based on accuracy and
relevancy in model classification. One of the opcode
generation techniques is to create a series of opcodes and
another one is to create a pair of two opcodes and then create
opcode vectors for other processing for images.

Zhang et al. [45] using the IRMD algorithm generated
the opcodes in a single sequence like push, lea, push, mov,
call which gives more importance to all the features. Other
techniques like 2-tuple opcode sequences <mov,mov> and
<mov, call> are also used in the experiment to get the results
and see the difference in images created using these
sequences.

After creating the opcode sequence the next step is to
convert these opcodes into some meaningful values which
can help in creating malware images. For this purpose, a
new algorithm is used which creates a hash value of a given
opcode sequence. This algorithm helps in comparing
sequence similarity which is used to make sure that there is
no collision between hash values.

3.1.3 Binary Hash Conversion
After creating an opcode sequence from one of the

techniques, the next step is to generate a hash of these
opcodes sequences. The hashing function used in the
experiments is a variation of different sizes and types of
Secure hashing algorithm (SHA)[46] which is used to
generate secure data using a cryptographic technique by
converting data that is given as input to fix the size string of
numbers and alphabets using different operations like
bitwise, modular addition and compression, etc. The
different algorithms used in experiments are SHA-256,

SHA-512[47], SHA-768, SHA-896, and SHA-1024 [48].
The difference between each encryption technique is the
stronger encryption methods and the size of hash value
generated increase as the number of SHA functions
increases.

One of the main reasons to use an SHA hash function is
the ability to create totally different hash values even a
slight change in the input value. In our experiments, the
sequence of machine operation codes (opcodes) are created.
The next step is to create the hash vector using one of the
similarity comparison algorithms like SimHash [21]. The
main reason for using a hashing algorithm to generate a
hash vector is to make the comparison between repeated
patterns of malware or similar malware because SimHash
creates the same hash of similar malware.

The algorithm which is used to create a hash of the
malware files takes as input the series of opcode values and
converts it into a binary vector to represent the file. The
SimHash algorithm starts by converting all the opcodes into
hash values. Based on these hash values weight vectors are
generated for each hash code which is then added up to
cumulative vectors which again get converted into binary
vectors for the generation of grayscale images.

The process of converting the opcode into a binary
vector as defined in Fig. 1 including the first step in which
the opcode sequences will be assigned to variables w which
will be converted into n-bit binary hash values using the
hash function. Now for each bit of hash value, if the bit is 1
the value of the corresponding bit of SimHash is increased
by 1 otherwise the value is decreased by 1. Now for
converting the SimHash vector into a binary format, we
have used the normalization technique and will set the value
to 1 if the bit is greater than 1 or else set it to 0.

3.2 Malware Image Generation
After converting each malware sample into a hash

value with equal length. The next step is to convert these
hash values to images by converting each hash value into a
pixel value. If the hash bit value is equal to 0 then the pixel
value will be 0 and if the hash bit value is 1 then the pixel
value will be 255. This conversion enables greyscale
malware images [49] to be generated using which we can
differentiate between different malware of different
families as shown in Fig [figure number], a malware has
different patterns between different families of malware.

As shown in the binary array has been given as a
parameter to function which will be converted into a proper
NumPy array for further manipulations and changes using
the NumPy library. After this, the array elements with the
value of 1 will be replaced by 255 and the remaining
elements will be 0 which is necessary for creating grayscale
images.

Fig 1: Algorithm process of SimHash

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

57

After changing the element values in the array the
array will get reshaped to create a proper image that can be
processed by the CNN model and patterns inside the image
can also be observed. According to the size of the array
which was 1600 because of using SHA-896 which produces
hashes of length approximately 1600, the array will be
reshaped into 40*40 which will create more sub-arrays due
to which the image can be easily created depends upon our
preferred size of the image. Here the standard malware
images size of width=250 and height=250 is used which
was used in many previous types of research using malware
images [9].

3.3 Convolutional Neural Network
The use of the deep learning approach is better to

overcome the problem of the creation of different malware
created daily as in deep learning architecture if the dataset
increases the classifier performance typically keeps on
increasing. In comparison, in the machine learning
approach performance of the model stops improving with
the increasing size of data. In case of any increase in the size
of training data which causes the performance of deep
learning networks to plateau, we can also increase the
performance by increasing the capacity of the neural
network by increasing the number of neurons or layers and
repeat the continuously improving cycle.

The other main problem due to the ever-increasing size
and variation of malware format is to extract features that
can be handled using our approach of using CNN
architecture, in which different layers of the neural network
are used to automatically learn features at different levels.
The architecture that we have used has rarely been used in
the domain of malware classification. Following is the CNN
architecture used during experimentation.

The architecture of our Convolutional Neural Network
model is based on VGG-16[17] which is considered as one
of the best performing architecture on ImageNet dataset
competitions. The model is trained on more than a million
images from the ImageNet database. In convolutional
neural networks the three main layers which are used to
make any architecture are fully connected, convolutional
and pooling layers. The full overview of VGG-16 CNN
architecture can be seen in figure.2.

This network is characterized by its simplicity, using
only 3×3 convolutional layers stacked on top of each other
in increasing depth. Reducing volume size is handled by
max pooling. Two fully connected layers, each with 4,096
nodes are then followed by a softmax classifier.

Fig 2: Detailed view of disassembly, feature extraction and image
creation process

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

58

3.4 Proposed Solution for Malware Classification:
The architecture of our proposed method is divided into

5 parts, as can be seen in Fig 2. The classification process
starts from dynamic analysis using a cuckoo sandbox
environment which will generate API call logs after running
malware or benign files inside a virtual machine. After that,
the opcode sequence is generated in a feature extraction
module which is then converted into a unique value
generated by different hash techniques applied on every
word of the opcode. After generating hash for all values the
SimHash function is applied which is used for generating
similarity matrices which are then divided into right vector
format for grayscale image generation which is then given
as input to CNN algorithm for classification.

3.5 Key Requirements

3.5.1 Dataset

The other samples used in this research were taken from
VirusShare.com which contains a repository of malware PE
files and also some windows PE files were used from our
personal computers for experimentations. The other sources
of the dataset were the benign executable (.exe) files of
software setups taken from filehippo.com and various
software downloading websites. The dataset consists of 500
PE executable files which contain malwares of 5 different
families which include Locker, Mediyes, Zbot, WinWebsec,
and Zeroaccess.

The malware was downloaded from the virus total after
requesting the author to use their virus-infected executable
files for research purposes which were given after some
validation.

3.5.2 Software Requirements.

The malware disassembly has been done using

 Cuckoo sandbox

 PyCharm IDE

 Python 2.7, 3.7

 Virtual Box
Software and the development of hash algorithms have been
done using Python 3.7 on PyCharm IDE.

The analysis using sandbox was done only on the
Ubuntu 18.0 operating system with Windows 10 used as OS
in virtual machines. The development of deep learning
algorithms has also been done using python with additional
Keras and Tensorflow libraries.

3.5.3 Hardware Requirements

During the research, many different hardware resources
have been used for powerful training computation of deep
learning algorithms on large datasets. For this purpose

university computers with hardware specifications of Core
i7 processor with 16GB RAM and 1070 T Nvidia GPU were
used. Online cloud platforms like google colab, Google
cloud were also used for training deep learning models.

3.6 Evaluation Matrix

The evaluation matrix used in the experiments is first to
find the accuracy of the model after applying it with one of
5 different hashing techniques and also to find accuracy
after applying 1-gram, 2-gram, and 3-gram opcode
sequence generation. Along with accuracy, the validation
accuracy was also evaluated which tells us about how much
accurate result our model will be able to give in case if new
data is evaluated using the put model.

The other evaluation factor which is used is log loss
which gives us the factor of the uncertainty of our model
based on predictions and tells us how much it will deviate
from the actual labels. The same will be applied to the
validation data and log loss will be evaluated for the
validation set also.

The other main evaluation matrix is the graph
containing training and validation accuracy and loss sync
graph which will show whether the model is not overfitting
if the graph of training and validation accuracy keeps on
increasing with sync readings and keeps on decreasing with
sync readings.

1. Results and Discussion

For the conversion of opcode sequence into a binary
form, the hashing technique was used in which several
hashing functions were used like Sha256, Sha512, Sha768,
Sha896, Sha1024. These hash functions created the
difference in image creation as greater hash functions
produced a greater length of binary number for image
creation. As a result, the images created using greater hash
functions were more complex and contained more patterns
as compared to lower hash functions as can be seen in Fig
3.

Fig 3: Malware greyscale image samples using SHA-256,

SHA-896 and SHA-1024 hashing

4.1 Results with different Hash Functions
The images created by different hash functions also

affected the accuracy and log loss when applied to the
Convolutional neural network model as can be seen in Table
3a. As can be seen that the training accuracy increases as

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

59

the hashing algorithm of greater length are used. But the
best result was given by the SHA-768 and SHA-1024

hashing functions.
Also, it can be seen from Fig 3 that greyscale images

created after opcode hashing using these hashing function
is different and as the length of output from hashing
function increases with an increasing number of hash
functions like SHA-1024 and SHA-896, the greyscale
images generated are more complex and contain more
patterns as compared to the lower length of hash functions.

Table 3a: Results using different hash functions

4.2 Results with different Opcode Sequence

The difference in the accuracy of models was also
observed due to the use of different opcode sequence

methods. In this research, the 1-gram, 2-gram, and 3-gram
opcode sequence methods were used and the difference in
model performance shown in Table 3b. As can be seen, the
model performed relatively well on a 3-gram opcode
sequence.

Table 3b: Results using different opcode sequences

Opcode
 Sequence

Accuracy Validation-
Accuracy

Loss Validation-
Loss

Hash

Functions

Accuracy Validation

Accuracy

Loss Validation

Loss

Sha-256 0.9438 0.8625 0.1333 0.1945

Sha-768 0.9607 0.9167 0.0887 0.1886

Sha-896 0.9536 0.9167 0.1191 0.1737

Sha-1024 0.9571 0.93338 0.1342 0.1699

Figure 4: Training and validation accuracy and loss graph in sync with each other

Fig 5: Similarity in pattern of same families

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

60

2-gram 0.9429 0.9000 0.14 0.2123

3-gram 0.9679 0.9250 0.09 0.2076

In Fig 4, we can see the training loss and accuracy using

the SHA-256 hashing function is in sync with validation
loss and accuracy. The validation loss and accuracy lines
are not linear but it shows that the model is not overfitting
because the validation loss is decreasing and not increasing
and also accuracy is increasing for both validation and
training data. Also, there is not much gap between training
and validation accuracy.

It is due to this similarity as can be seen in Fig. 5 and
the difference between different malware family patterns
that malware greyscale image can give much better results
because obfuscation or cryptographic techniques to change
the behavior of software will result in the creation of similar
malware image with only few pixel changes.

4.3 Results Using Hash Functions with opcode

sequences
i. 2-gram
The images created by different hash functions also

affected the accuracy and log loss when applied to the
Convolutional neural network model as can be seen in the
Table 4. As can be seen that the training accuracy increases
when the hashing algorithms with greater length are used.
But the best result was given by the SHA-768 and SHA-
1024 hashing functions.

ii. 3-gram
Also, the result of a 3-gram opcode sequence with

different hash functions can be seen in Table 5. According
to the result, the CNN model performs best when used with
Sha-256 and Sha-768 techniques based on accuracy and
loss.

The performance evaluated from 2-gram and 3-gram
opcode sequences show us that lower n-gram sequence
gives best results with a high number of hashing techniques
and greater n-gram sequences give better result with lower
hash functions.

iii. VGG-16 Model:
As shown in Table 6, SHA-768 performed better when

applied on VGG-16 model for classification with an input
size of 150 x 150 (width x height) as compared to other sizes.

Table 4: Results using different hash functions with 2-gram
opcode sequence

Hash
Function

Accuracy Validation
Accuracy

Loss Validation-
Loss

Sha-256 0.9536 0.8833 0.122 0.2435

Sha-768 0.9464 0.9000 0.142 0.2478

Sha-896 0.9286 0.9083 0.136 0.2275

Sha-1024 0.9179 0.8917 0.157 0.1990

Table 5: Results using different hash functions with 3-gram
opcode sequence

Hash
Function

Accuracy Validation-
Accuracy

Loss Validation-
Loss

Sha-256 0.9679 0.9333 0.1021 0.1966

Sha-768 0.9607 0.9250 0.0987 0.1916

Sha-896 0.9357 0.9167 0.1374 0.2311

Sha-1024 0.9429 0.8833 0.1193 0.2747

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

61

Table 6: Results using different hash functions with 3-gram
opcode sequence

Accuracy Loss Validation
Accuracy

Validation
Loss

Input
Size

0.9594 0.1483 0.9000 0.1920 150,150

0. 8375 0.4525 0. 8750 0.5179 28,28

2. Limitations

Learning of good robust features is an active area of
research in AI. For malware detection, the hope for these
techniques is that they will be less prone to the time drift
problem. With an increase in the size of a dataset, the size
of the deep learning model (CNN) also increases which
becomes very complex and computationally very hard for
the system to compute malware on CNN techniques. This
requires powerful hardware with more GPUs.

As malware analysis technologies become known,
malware authors begin to utilize anti-analysis techniques,
which include anti-virtualization and anti-debugging, to
detect and disturb the analysis [6]. A study has shown that
deploying a decoy executable in online dynamic malware
sandbox analysis systems for analysis can provide
information to the attacker about the analysis system. A new
technique called Decoy Sample Injection (DSI), which can
be conducted against a public malware analysis system
using an Internet-connected sandbox. The technique points
out that IP addresses of Internet-connected sandboxes in the
public malware sandbox analysis systems which can be
disclosed by an attacker who submits a decoy sample
designed for this purpose. The disclosed address can then
be shared among attackers as a blacklist to detect and
disturb the analysis.

3. Future Work

With these feature extraction techniques performing
relatively different than other techniques in the greyscale
generation, they can be further used with other hashing
similarity techniques like cosine similarity, sketching
algorithms to check differences with our proposed approach.
One advantage of using deep learning is that it can also tell

us which portions of a file are malicious by looking at
receptive fields of neurons that get activated. This opens the
possibility of a malware analyst using deep learning as a
tool to assist in the task of classifying difficult cases. This
could also lead to finding out the specific purpose or
specific data that the malware is intended to carry out from
a specific system which can allow the antimalware
stakeholders to take necessary security measures and
modify antimalware software according to the specific
problem which the organization is facing rather than having
general standards and rules set to analyze and classify
malware.

4. Conclusion

In this paper, we have introduced the malware
classification framework with dynamic analysis and using
different hashing techniques and opcode sequences to
generate varying patterns of malware images with different
complexity and got different accuracies in which SHA-768
gave the best performance and 3-gram opcode sequence
gave us better results as compared to 1-gram and 2-gram
sequences. Also, we applied these images generated by
SHA-768 to VGG-16 using which we got the best accuracy
of 96% with greater image size.

References:
[1] McAfee LabsTreats Report in June 2017,”

https://www.mcafee.com/us/resources/reports/rp quarterly threats
jun 2017.pdf

[2] Cesare, S., Xiang, Y. and Zhou, W., 2012. Malwise an effective and
efficient classification system for packed and polymorphic malware.
IEEE Transactions on Computers, 62(6), pp.1193 1206.

[3] Wood, P., Nahorney, B., Chandrasekar, K., Wallace, S. and Haley,
K., 2016. Symantec internet security threat report. Symantec
Corporation, Tech. Rep., 21.

[4] Griffin, K., Schneider, S., Hu, X. and Chiueh, T.C., 2009, September.
Automatic generation of string signatures for malware detection. In
International workshop on recent advances in intrusion detection (pp.
101 120). Springer, Berlin, Heidelberg.

[5] Burguera, I., Zurutuza, U. and Nadjm Tehrani, S., 2011, October.
Crowdroid: behavior based malware detection system for android. In
Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices (pp. 15 26). ACM.

[6] You, I. and Yim, K., 2010, November. Malware obfuscation
techniques: A brief survey. In 2010 International conference on
broadband, wireless computing, communication and applications
(pp. 297 300). IEEE.

[7] Greamo, C. and Ghosh, A., 2011. Sandboxing and virtualization:
Modern tools for combating malware. IEEE Security & Privacy,
9(2), pp.79 82.

[8] You, I. and Yim, K., 2010, November. Malware obfuscation
techniques: A brief survey. In 2010 International conference on
broadband, wireless computing, communication and applications
(pp. 297 300). IEEE.

[9] Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B.S., 2011,
July. Malware images: visualization and automatic classification. In
Proceedings of the 8th international symposium on visualization for
cyber security (p. 4). ACM.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.8, August 2023

62

[10] Shaid, S.Z.M. and Maarof, M.A., 2014, August. Malware behavior

image for malware variant identification. In 2014 International
Symposium on Biometrics and Security Technologies (ISBAST) (pp.
238 243). IEEE.

[11] Alazab, Mamoun, Sitalakshmi Venkatraman, Paul Watters, and
Moutaz Alazab. "Zero day malware detection based on supervised
learning algorithms of API call signatures." In Proceedings of the
Ninth Australasian Data Mining Conference Volume 121, pp. 171-
182. Australian Computer Society, Inc., 2011.

[12] Iwamoto, Kazuki, and Katsumi Wasaki. "Malware classification
based on extracted api sequences using static analysis." In
Proceedings of the Asian Internet Engineering Conference, pp. 31 38.
ACM, 2012.

Asad Amin received the B.S and M.S.
degree in Computer Science from FAST-
National University of Computer and
Emerging Sciences in 2015 and 2020
respectively. During 2015-2020, he worked
as a software engineer on projects related to
Fintech, Banking and E-Commerce domains
in both project and product based software

companies. Currently working as a software engineer for Netpace
inc.

Nouman M. Durrani is an Assistant
Professor in the Department of Computer
Science, FAST National University of
Computer and Emerging Science, Karachi.
He has received his Ph.D. (CS) from FAST
NUCES in 2017. He is a member of Systems
Research Laboratory and Center for Research
in Ubiquitous Computing (CRUC), and Co-PI
at the HEC National Center in Big Data and

Cloud Computing (NCBC), Smart Video Surveillance Lab FAST-
NUCES. His research interests include Heterogeneous Devices
Volunteer Computing, Distributed Systems, IoTs, Computer
Vision, and Big Data Analytics.

Nadeem Kafi Khan is an Assistant
Professor in the Department of Computer
Science, FAST National University of
Computer and Emerging Sciences,
Karachi. He has received his Ph.D (EE)
from FAST NUCES in 2020. He is a
member of Systems Research Laboratory
and Center for Research in Ubiquitous
Computing (CRUC). His research interests
include Software Defined Networks,

Wireless Sensor Networks, Parallel/Distributed Computing,
Software Engineering and Crowdsourced Human Computations.

Fahad Samad received his Ph.D. from
RWTH Aachen University Germany in
2011. He is working as an Assistant
Professor in the FAST School of Computing
since 2017. His research interests include
Network Analysis through Crowdsourcing,
Network Security, Software Defined
Networks and Internet of Things.
Additionally, he has a number of

international publications in different IEEE and ACM conferences
and journals.

Abdul Aziz, an academician and researcher
serving as an Assistant Professor at the
Department of Computer Science, National
University of Computer & Emerging
Sciences– FAST, Karachi, Pakistan. He has
over a decade of experience with academia
& industry in the field of Information
Technology. His research interests are in the
area of emerging trends in Computer Science,

Education Management and Disaster Management.

