• Title/Summary/Keyword: Rapid Mold Heating & Cooling

Search Result 21, Processing Time 0.053 seconds

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Development of rapid mold heating & cooling technology to remove weldline on surface appearance in telephone case (전화기 케이스 외관의 Weldline 제거를 위한 금형 급속 가열-냉각 기술 개발)

  • Cha, B.S.;Park, H.P.;Lee, S.Y.;Kim, O.R.;Lee, S.W.;Rhee, B.O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.439-443
    • /
    • 2008
  • Painting process or coating with acrylic film may improve the surface defects of injection molded parts deteriorated by weldlines. flow marks. and etc. However such processes increase the production costs and increase environmental problems. Recently various types of rapid mold heating & cooling technology have been developed in order to improve surface quality of products. In this study. the heating & cooling performance of a telephone case mold is investigated by heat transfer analysis, in which the rapid mold heating & reeling technology is applied. The surface temperature of the mold was measured using thermal image camera and compared with analysis results. The influence of the rapid mold heating & cooling technology on weldline appearance and cycle time increase was also examined.

  • PDF

Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold (고주파유도 급속 금형가열 과정의 3차원 유한요소해석)

  • Sohn, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

The Effect of Various Molding Methods for Precision Optical Products Using Birefringence Analysis (정밀 광학부품의 복굴절 분석을 통한 각종 성형법의 영향에 관한 연구)

  • Min, I.K.;Cho, S.W.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • As the adoption of injection molding technology increases, injected-molded optical products require higher dimensional accuracy and optical stability than ever before. In the present study, four kinds of molding methods, i.e., conventional injection molding (CIM), injection/compression molding (ICM), rapid heat and cooling the mold(RHCM) and rapid injection/compression molding (RICM) were selected in order to investigate the optical anisotropy of a 7 inch Light Guide Plate(LGP) by examining the gap-wise distribution of birefringence and the extinction angle. The results indicate that the compression process can decrease flow-induced birefringence over the whole region and that rapid heating can decrease the birefringence level better than conventional molding. In addition, for the combination of compression and rapid heating a reversal flow was detected from the distribution of the extinction angle near the gate.

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

Improvement of Weldlines of an Injection Molded Part with the Aid of High-Frequency Induction Heating (고주파 유도가열을 적용한 사출성형품의 웰드라인 개선)

  • Seo, Young-Soo;Son, Dong-Hwi;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.437-440
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner. Thanks to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding. The present study applies the high-frequency induction heating for elimination of weldlines in an injection-molded plastic part. To eliminate weldlines, the mold temperature of the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through experiments, the maximum temperature of $143^{\circ}C$ is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than $60^{\circ}C$. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated.

  • PDF