• Title/Summary/Keyword: Raphanus sativus seeds

Search Result 35, Processing Time 0.026 seconds

Reduction of Microbial Load on Radish (Raphanus sativus L.) Seeds by Aqueous Chlorine Dioxide and Hot Water Treatments (이산화염소수 및 열수처리에 따른 무(Raphanus sativus L.) 새싹 종자의 미생물 제어 효과)

  • Park, Kee-Jai;Lim, Jeong-Ho;Kim, Ji-Hye;Jeong, Jin-Woong;Jo, Jin-Ho;Jeong, Seong-Woong
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.487-491
    • /
    • 2007
  • This study was conducted to investigate the effect of treatment with squeous chlorine dioxide and hot water on the germination of radish (Raphanus sativus L.) seeds, and reduction of microbial load on the seeds. Increases in treatment and the concentration of aqueous chlorine dioxide in water resulted in increasing reductions in the counts of total aerobic microbes. Seeds treated with aqueous chlorine dioxide (100 ppm/20min, 200ppm/20min) showed about a 10-fold decrease in microbial loads. Germination of seeds was not adversely affected by any treatment tested, although the germination rate of seeds in the group treated at $55^{\circ}C$ for 20 min was reduced by 10% compared to that of control. Combined treatment with hot water and aqueous chlorine dioxide yielded better out comes in both microbial reduction and seed germination rate than did single treatments. A combined treatment with 100 ppm aqueous chlorine dioxide and hot water($45^{\circ}C$ or $50^{\circ}C$) resulted in about a 100-fold decrease in microbial load whereas germination rate showed only a slight increase to $97.0{\sim}97.7%$. Total aerobic microbial counts in radish seeds were decreased by aqueous chlorine dioxide and hot water treatment in the order. aqueous $CIO_2$+ hot water > aqueous $CIO_2$ > chlorinated water > hot water > control.

Nondestructive Classification of Viable and Non-viable Radish (Raphanus sativus L) Seeds using Hyperspectral Reflectance Imaging (초분광 반사광 영상을 이용한 무(Raphanus sativus L) 종자의 발아와 불발아 비파괴 판별)

  • Ahn, Chi Kook;Mo, Chang Yeun;Kang, Jum-Soon;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.411-419
    • /
    • 2012
  • Purpose: Nondestructive evaluation of seed viability is a highly demanded technique in the seed industry. In this study, hyperspectral imaging system was used for discrimination of viable and non-viable radish seeds. Method: The spectral data with the range from 400 to 1000 nm measured by hyperspectral reflectance imaging system were used. A calibration and a test models were developed by partial least square discrimination analysis (PLS-DA) for classification of viable and non-viable radish seeds. Either each data set of visible (400~750 nm) and NIR (750~1000 nm) spectra and the spectra of the combined spectral ranges were used for developing models. Results: The discrimination accuracy of calibration was 84% for visible range and 76.3% for NIR range. The discrimination accuracy of test was 84.2% for visible range and 75.8% for NIR range. The discrimination accuracies of calibration and test with full range were 92.2% and 92.5%, respectively. The resultant images based on the optimal PLS-DA model showed high performance for the discrimination of the nonviable seeds from the viable seeds with the accuracy of 95%. Conclusions: The results showed that hyperspectral reflectance imaging has good potential for discriminating nonviable radish seeds from massive amounts of viable seeds.

Effects of Inoculation of Rhizomicrobial Strains on Plant Growth at the Early Germination Stage

  • Yoo, Jae Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.153-157
    • /
    • 2014
  • Plant-growth-promoting rhizobacteria can affect plant growth by various direct and indirect mechanisms. This study was conducted to determine the ability of some rhizobacterial strains to enhance the seed germination of Lactuca sativa (lettuce) and Raphanus sativus (radish). Seeds were inoculated using a spore suspension ($1{\times}10^7cfumL^{-1}$) and incubated in a growth chamber at $28^{\circ}C$ under dark conditions and 65% RH. Azotobacter chroococcum and LAP mix inoculation increased the plumule length of L. sativa by 1.3, 0.8, and 0.7 cm, respectively, in comparison to the uninoculated control. Pseudomonas putida showed an increase of only 0.6 cm in plumule length when compared to the control. Inoculation of A. chroococcum, P. putida, and LAP mix enhanced the seed germination rate of R. sativus, by 10, 5, and 30%, respectively, in comparison with the uninoculated seeds. The results demonstrated that the inoculation of seeds by select rhizobacterial strains showed remarkable enhancement to the radicle length of lettuce and radish seedlings.

NONDESTRUCTIVE GERMINABILITY ASSESSMENT OF RADISH SEEDS BY NIR SPECTROSCOPY

  • Min, T.G.;Kang, W.S.;Ryu, K.S.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1630-1630
    • /
    • 2001
  • NIR specroscopy is widely used today as a quantitative technique for predicting the chemical composition of various agricultural product. However there exist few application for seed quality assessment, especially for seed germinability. This study is to show the possibilities of a nondestructive estimation of germinability in radish (Raphanus sativus L) seeds. The experiment carried out on one radish cultivar (Chung Su Gung Jung, Nong Woo Bio Co., Ltd.) harvested in 1993. NIR(Foss Co.) spectral measurements were carried out on the seeds surface of flat side. The seeds after spectral measurements were planted on blotter individually and observed germination. The seeds were characterized to nongermination and germination group, which in turn grouped to normal and abnormal germination and then compared with the NIR spectra. The spectra from these seed groups were compared each other, The result suggested that NIR spectra could be applicable to determine radish seeds germinability.

  • PDF

In vitro micropropagation of radish (Raphanus sativus L.) using callus induction and plant regeneration (캘러스 유기와 식물체 재분화를 이용한 무의 기내 대량증식)

  • You Kyoung Kim;Sug Youn Mo;Su Bin Choi;Han Yong Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.155-162
    • /
    • 2023
  • Radish (Raphanus sativus L.), a root vegetable grown worldwide, is consumed in several ways. In the cross between parental lines to produce F1 seeds of radish, the problem of low purity may arise because of pollen contamination. Therefore, we aimed to establish conditions for callus induction and regeneration so that in vitro cultured plants could be used for the propagation of stock seeds. The most effective hormone combination containing various concentrations of 2,4-D, TDZ, and kinetin was selected for callus induction using radish hypocotyl, and the induced calli were transferred to two types of hormone media to investigate the optimal conditions for shoot regeneration of the callus. The combination of 1 mg/L 2,4-D + 0.05 mg/L kin was the most effective for callus induction of RA2 and RA10, 1 mg/L 2,4-D + 0.1 mg/L kin + 0.025 mg/L TDZ of RA4, and 1 mg/L 2,4-D + 0.2 mg/L kin of RA30. Shoot regeneration of the RA4 callus occurred in both shoot regeneration media, but the frequency was much higher in the 5H+1B medium (1 mg/L NAA + 0.1 mg/L 2,4-D + 1 mg/L IPA + 0.02 mg/L GA3 + 2 mg/L zeatin + 1 mg/L BA). For the in vitro micropropagation of radish, the conditions selected in this study can assist in the propagation and maintenance of stock seeds to produce F1 seeds.

Relationship Between Sinapine Leakage Degrees of Radish Seeds and Germination and Morphological Differences of the Seeds and Seedlings (Sinapine 누출정도에 따른 무(Raphanus sativus L.) 종자의 발아율과 종자 및 유묘의 외형적 차이)

  • Min, Tai-Gi;Back, Jun-Ho;Kim, Bok-Jin
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.238-242
    • /
    • 1997
  • Seeds of five radish varieties were soaked in water for three hours and cellulose was coated. The seeds were classified as three groups in UV light; non-fluorescent(NF), partly fluorescent(PF), and fully fluorescent(FF) seeds. Germination rate was less in the order of NF>PF>FF seeds. The seed coat structure of NF seeds was dense and showed round shape, while those of PF and FF seeds were wrinkled or ruptured. The cotyledon and hypocotyl of NF seeds were normal, while those of PF and FF seeds were dwarf and showed some scars in the cotyledons.

  • PDF

Effect of Light on Developmental Changes and Activities of Microbody in the Cotyledons of Radish Seedlings (발아중 빛에 의한 무 유식물의 자엽 Microbody의 활성 변화)

  • 박민철
    • Journal of Plant Biology
    • /
    • v.29 no.4
    • /
    • pp.243-254
    • /
    • 1986
  • The enzyme patterns and the food storage changes in radish (Raphanus sativus L. cv. Taewang) cotyledons during seedling development were studied. The radish seeds were germinated for 8 days at $25^{\circ}C$ under light (7, 000 lux) or dark condition. The lipid and protein contents per seed were 4.3 mg and 2.85 mg respectively. In 8-day-old light-grown seedling, the lipid and protein contents per cotyledon pair were 1.5 mg and 2.08 mg; in 8-day-old dark-grown seedling, they were 0.8 mg and 1.24 mg respectively. The heterotrophic phase of seedlings continued for 3 days after sowing and followed by autotrophic phase (3~6 day) and senescence phase (6~8 day). The food storage function decreased in response to time course. During heterotrophic phase, the activities of glyoxysomal enzymes (malate synthetase, isocitrate lyase, and catalase) were high at 2~3 day. Those patterns were somewhat more prominent in darkness. During the autotrophic phase, the activities of peroxysomal enzymes (glycolate oxidase and catalase) increased at 4~5 day.

  • PDF

Optimum Double-Row Spacing in the Autumn Cultivation of Radish (Raphanus sativus L.) (가을 무(Raphanus sativus L.)두 줄 재배를 위한 적정 재식거리)

  • Kang, Eun Seon;Ha, Sun Mi;Cheong, Seoung Ryong;Seo, Myeong Whoon;Park, Su hyoung;Kwack, Yong-Bum;Choi, Keun Jin;Chae, Won Byoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.204-209
    • /
    • 2015
  • BACKGROUND: Radish (Raphanus sativus L.) is cultivated worldwide and one of important vegetables in Korea where year-round production of radish is possible. Most of radishes in autumn are cultivated with double-row spacing except for Gangwon-do where sing-row spacing is predominant. However, no research has been conducted on double-row spacing in radish cultivation so far. This study was conducted to reveal the optimum double-row spacing in autumn cultivation of radish. METHODS AND RESULTS: Using top two popular autumn radish cultivars 'S' and 'C', seeds were sown in spacing between rows of $55{\times}25$, $45{\times}25$, $35{\times}25$ and $25{\times}25cm$, and that within rows of $35{\times}28$, $35{\times}25$, $35{\times}22$ and $35{\times}19cm$. Plants were harvested 58 days after sowing and leaf weight, length and number, and root weight, length sugar content and pithiness were investigated. In the spacing between rows, no significant difference was observed in leaf weight, length and number in both cultivars; however, 25 cm of spacing between rows significantly reduced the root length and weight in 'S' and 'C' cultivars, respectively. In spacing within rows, 28, 25 and 22 cm did not affect fresh root weight in both cultivars, producing appropriate radish roots of 1,500g on average. However, 19 cm of spacing within rows did not reduced fresh root weight in 'S' cultivar but did significantly in 'C' cultivar (1148.3 g). Sugar contents and pithiness of roots were also affected by spacing but its effect was very small and different between cultivars. CONCLUSION: It is suggested that optimum double-row spacing in autumn radish cultivation is 35 cm and 22 cm of spacing between and within rows, respectively, the spacing that did not reduce the yield and quality of radish roots in two popular autumn radish cultivars.

Effects of Gamma Radiation on the Germination, Growth and Enzyme (peroxidase and catalase) Activities of Old Vegetable Seed (묵은 채소 종자의 발아와 생육 및 효소활성에 미치는 $\gamma$선의 영향)

  • 김재성;백명화;김동희;이영근;정규회
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.3
    • /
    • pp.205-210
    • /
    • 2001
  • To determine the effect of low dose gamma radiation on the germination and enzyme activities, seeds of Chinese cabbage (Brassica compestris L. cv. Hanyoreum) and radish (Raphanus sativus L. cv. Chungsukoungzoung) were irradiated at the dose of 2-50 Gy. The germination rate of irradiation group was higher than that of the control. Especially it was highest at the early stage. The germination rate of Chinese cabbage was high at 2 Gy and 8 Gy irradiation group and that of radish was high at 2 Gy, 6 Gy and 10 Gy irradiation group. Growth of both seedlings of Chinese cabbage and radish increased positively in low dose irradiation group. The height of Chinese cabbage was noticeably high at 4 Gy and 10 Gy irradiation group and that of radish at 6 Gy irradiation group. The protein contents of seedlings from seeds irradiated with the low dose gamma radiation was higher than the control, especially at the early stage. The enzyme activities of seedlings from seeds irradiated with the low dose gamma radiation was high at 4 Gy and 10 Gy irradiation group. These results suggest that the germination, growth and enzyme activities of old vegetable seeds could be promoted by the low dose gamma radiation.

  • PDF