DOI QR코드

DOI QR Code

In vitro micropropagation of radish (Raphanus sativus L.) using callus induction and plant regeneration

캘러스 유기와 식물체 재분화를 이용한 무의 기내 대량증식

  • You Kyoung Kim (Department of Bioresource Engineering, Sejong University) ;
  • Sug Youn Mo (Department of Bioresource Engineering, Sejong University) ;
  • Su Bin Choi (Department of Bioresource Engineering, Sejong University) ;
  • Han Yong Park (Department of Bioresource Engineering, Sejong University)
  • 김유경 (세종대학교 바이오산업자원공학과) ;
  • 모숙연 (세종대학교 바이오산업자원공학과) ;
  • 최수빈 (세종대학교 바이오산업자원공학과) ;
  • 박한용 (세종대학교 바이오산업자원공학과)
  • Received : 2023.05.28
  • Accepted : 2023.06.22
  • Published : 2023.09.06

Abstract

Radish (Raphanus sativus L.), a root vegetable grown worldwide, is consumed in several ways. In the cross between parental lines to produce F1 seeds of radish, the problem of low purity may arise because of pollen contamination. Therefore, we aimed to establish conditions for callus induction and regeneration so that in vitro cultured plants could be used for the propagation of stock seeds. The most effective hormone combination containing various concentrations of 2,4-D, TDZ, and kinetin was selected for callus induction using radish hypocotyl, and the induced calli were transferred to two types of hormone media to investigate the optimal conditions for shoot regeneration of the callus. The combination of 1 mg/L 2,4-D + 0.05 mg/L kin was the most effective for callus induction of RA2 and RA10, 1 mg/L 2,4-D + 0.1 mg/L kin + 0.025 mg/L TDZ of RA4, and 1 mg/L 2,4-D + 0.2 mg/L kin of RA30. Shoot regeneration of the RA4 callus occurred in both shoot regeneration media, but the frequency was much higher in the 5H+1B medium (1 mg/L NAA + 0.1 mg/L 2,4-D + 1 mg/L IPA + 0.02 mg/L GA3 + 2 mg/L zeatin + 1 mg/L BA). For the in vitro micropropagation of radish, the conditions selected in this study can assist in the propagation and maintenance of stock seeds to produce F1 seeds.

무(Raphanus sativus L.)는 전세계적으로 재배되고 있는 뿌리 채소 중 하나로, 다양한 방법으로 소비되고 있다. 무의 F1종자 생산을 위한 원종 계통의 교배 과정에서는 화분 혼입으로 인해 순도가 떨어지는 문제가 발생할 수 있다. 따라서 본 연구에서는 무의 기내 대량증식을 위해 캘러스 재분화를 통한 대량증식 조건을 확립함으로써 기내배양 식물체를 증식시키고 원종 증식에 이용될 수 있도록 하는 것을 목표로 하였다. 무의 하배축을 이용한 캘러스 유기에서 다양한 농도의 2,4-D와 TDZ, kinetin 조합 중 가장 효과적인 조합을 선정하고, 유기된 캘러스를 두 종류의 배지(5H+1B, 1 mg/L NAA + 0.1 mg/L 2,4-D + 1 mg/L IPA + 0.02 mg/L GA3 + 2 mg/L zeatin + 1 mg/L BA; 5H+0.1T, 1 mg/L NAA + 0.1 mg/L 2,4-D + 1 mg/L IPA + 0.02 mg/L GA3 + 2 mg/L zeatin + 0.1 mg/L TDZ)에 치상함으로써shoot 재분화에 적합한 호르몬 조건을 탐색하였다. 무의 캘러스 배양 결과, RA2 계통과 RA10 계통은 1 mg/L 2,4-D + 0.05 mg/L kin 조합에서, RA4 계통은 1 mg/L 2,4-D + 0.1 mg/L kin + 0.025 mg/L TDZ 조합에서, RA30 계통은 1 mg/L 2,4-D + 0.2 mg/L kin 조합에서 캘러스의 형성이 효과적이었다. RA4 계통에서 유기된 캘러스의 shoot 재분화는 두 종류의 shoot 재분화 배지에서 모두 일어났지만, 그 빈도는 5H+1B 배지에서 훨씬 더 높았으며 재분화된 shoot를 발근배지에 계대배양하여 뿌리를 유도하고 기내 순화 과정을 거쳐 재분화된 소식물체를 얻을 수 있었다. 이 연구에서 확립한 조건들을 무의 기내 대량번식에 활용한다면, F1 종자 생산을 위한 원종 증식에 도움이 될 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 농촌진흥청의 재원으로 국가생명연구자원선진화사업의 지원을 받아 연구되었음(PJ016045032023).

References

  1. Afshari R, Angoshtari R, Kalantari S (2011) Effects of light and different plant growth regulators on induction of callus growth in rapeseed ('Brassica napus L.') genotypes. Plant Omics 4(2):60-67
  2. Basnayake SW, Moyle R, Birch RG (2011) Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Rep 30(3):439-448 https://doi.org/10.1007/s00299-010-0927-4
  3. Case AL, Curtis PS, Snow AA (1998) Heritable variation in stomatal responses to elevated CO2 in wild radish, Raphanus raphanistrum (Brassicaceae). Am J Bot 85(2):253-258 https://doi.org/10.2307/2446313
  4. Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechno lett 32(9):1199-1205 https://doi.org/10.1007/s10529-010-0290-0
  5. Daud NFA, Hasbullah NA, Azis NA, Rasad FM, Amin MAM, Lassim MM (2015, April) In vitro regeneration of Brassica oleracea var. capitata trough steams, roots, leaves and petioles cultures. In International Conference on AEMS 7-8
  6. Hassanpouraghdam MB (2009) The effects of different culture media on the callus production of radish (Raphanus sativus L.). Rom Biotechnol Lett 14(4):4519-4523
  7. He Y, Guo X, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F (2009) Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. PCTOC 98:11-17 https://doi.org/10.1007/s11240-009-9533-y
  8. Hegazi HH, Matsubara S (1992) Callus formation and plant regeneration from protoplast derived from cotyledons and hypocotyls of radish (Raphanus sativus L.) and other cruciferous plants. J Japan Soc Horti Sci 61(1):63-68
  9. Kharrazi M, Nemati H, Tehranifar A, Bagheri A, Sharifi A (2011) In vitro culture of carnation (Dianthus caryophyllus L .) focusing on the problem of vitrification. J Biol Environ Sci 5(13):1-6
  10. Khehra GS, Mathias RJ (1992) The interaction of genotype, explant and media on the regeneration of shoots from complex explants of Brassica napus L. J Exp Bot 43(11):1413-1418
  11. Korean Seed Association (2022a) Domestic production of vegetable seeds
  12. Korean Seed Association (2022b) Sales of vegetable seeds by crop
  13. LaRue CD (1936) Tissue cultures of spermatophytes. Proc Natl Acad Sci USA. 1936 Apr 22(4):201-9 https://doi.org/10.1073/pnas.22.4.201
  14. Lin YJ, Zhang Q (2005) Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23(8):540-547
  15. Matsubara S, Hegazi HH (1990) Plant regeneration from hypocotyl callus of radish. HortScience 25(10):1286-1288 https://doi.org/10.21273/HORTSCI.25.10.1286
  16. Meenashree B, Kathiravan G, Srinivasan K, Rajangam B (2017) Effect of plant hormones and media composition on browning and growth of Bacopa monnieri callus cultures. Res J Pharm Technol 10(2):497-500 https://doi.org/10.5958/0974-360X.2017.00099.3
  17. Murakami T, Ono Y, Takahata Y (1995) Phytohormonal and genotypic factors affecting shoot regeneration from cotyledonary explant of radish (Raphanus sativus L.). Plant Tissue Cult Lett 12(3):321-323 https://doi.org/10.5511/plantbiotechnology1984.12.321
  18. Nakanishi T, Esashi Y, Hinata K (1969) Control of self-incompatibility by CO2 gas in Brassica. Plant Cell Physiol 10(4):925-927 https://doi.org/10.1093/oxfordjournals.pcp.a074478
  19. Nakanishi T, Hinata K (1973) An effective time for CO2 gas treatment in overcoming self-incompatibility in Brassica. Plant Cell Physiol 14(5):873-879
  20. Narasimhulu SB, Chopra VL (1988) Species specific shoot regeneration response of cotyledonary explants of Brassicas. Plant Cell Rep 7(2):104-106
  21. Park MC, Son SI, KIM JC (1996) Plant regeneration from hypocotyl-derived callus of radish (Raphanus sativus). Korean J Plant Tissue Cult 23(4):243-247
  22. Pua EC, Sim GE, Chi GL, Kong LF (1996) Synergistic effect of ethylene inhibitors and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey) in vitro. Plant Cell Rep 15(9):685-690
  23. Thu HTM, Naing AH, Jeong HY, Kim CK (2020) Regeneration of genetically stable plants from in vitro vitrified leaves of different carnation cultivars. Plants 9(8):950