• Title/Summary/Keyword: Range Constraint

Search Result 193, Processing Time 0.027 seconds

The design of XYZ 3-axis stage for AFM system (AFM 시스템을 위한 XYZ 3축 스테이지의 설계)

  • 김동민;김기현;심종엽;권대갑;엄천일
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • To Establish of standard technique of length measurent in 2D plane, we develope AFM system. The XY scanner scans the sample only in XY plane, while the Z scanner scans the specimen only in Z-direction. Cantilever tip is controlled to has constant height relative to speciman surface by feedback of PSPD signal. To acquire high accuracy, Z-axis measuring sensor will be added.(COXI or others). In this paper we design XYZ stage suitable for this AEM system. For XY stage, single module parallel-kinnematic flexure stage is used which has high orthogonality and minimum out-of-plane motion. To obtain best performance optimal design is performed. For XY stage, to be robust about parasitic motion optimal design of maximizing Z and tilt stiffness is performed under the constraint of motion range and stage size. And for Z stage, optimal design of maximizing 1st resonant frequency is performed. Because if resonant frequency is get higher, scan speed is improved. So it makes reduce the error by sensor drift. Resultly XYZ stage each have 1st natural frequency of 115㎐, 201㎐, 2.66㎑ and range 109㎛, 110㎛, 12㎛.

  • PDF

Nonparametric Ground-Motion Evaluation of Shear-Wave Fourier Spectra (비매개변수법에 의한 주파수별 스펙트럼감쇠 평가)

  • 연관희;박동희;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.20-27
    • /
    • 2003
  • The nonparametric method was employed to obtain detailed broadband attenuation characteristics of horizontal Fourier spectra without generally assigned constraint that derived path terms be zeros at a reference distance. Instead, path terms fer a reference distance were obtained based on the physical phenomenon that the seismic phase is stable over the hypocentral distance range from 200km to 400km so that the Q-values evaluated at several distances inside that region should be the same. The inverted path terms show three distinct linear regions roughly divided by hypocentral distances at 65km and 115km. Also complex behavior at the near distance range below 100km was revealed which can not be properly fitted by combination of single $Q_{0}$ $f^{η}$ model and any geometrical spreading models.s.

  • PDF

Development of Water Supply System under Uncertainty

  • Chung, Gun-Hui;Kim, Tae-Woong;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2179-2183
    • /
    • 2009
  • As urbanization is progressed, the network for distributing water in a basin become complex due to the spatial expansion and parameter uncertainties of water supply systems. When a long range water supply plan is determined, the total construction and operation cost has to be evaluated with the system components and parameter uncertainties as many as possible. In this paper, the robust optimization approach of Bertsimas and Sim is applied in a hypothetical system to find a solution which remains feasible under the possible parameter uncertainties having the correlation effect between the uncertain coefficients. The system components to supply, treatment, and transport water are included in the developed water supply system and construction and expansion of the system is allowed for a long-range period. In this approach, the tradeoff between system robustness and total cost of the system is evaluated in terms of the degree of conservatism which can be converted to the probability of constraint violation. As a result, the degree of conservatism increases, the total cost is increased due to the installation of large capacity of treatment and transportation systems. The applied robust optimization technique can be used to determine a long-range water supply plan with the consideration of system failure.

  • PDF

Increasing the Range of Modulation Indices with the Polarities of Cells and Switching Constraint Reliefs for the Selective Harmonic Elimination Pulse Width Modulation Technique

  • Najjar, Mohammad;Iman-Eini, Hossein;Moeini, Amirhossein
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.933-941
    • /
    • 2017
  • In this paper an improved low frequency selective harmonic elimination-PWM (SHE-PWM) technique for Cascaded H-bridge (CHB) converters is proposed. The proposed method is able to eliminate low order harmonics from the output voltage of the converter for a wide range of modulation indices. To solve SHE-PWM equations, especially for low modulation indices, a modified method is used which employs either the positive or negative voltage polarities of H-bridge cells to increase the freedom degrees of each cell. Freedom degrees of the switching angles are also used to increase the range of available solutions for non-linear SHE equations. The proposed SHE methods can successfully eliminate up to $25^{th}$ harmonic from a 7-level output voltage by using just nine switching transitions or a 150 Hz switching frequency. To confirm the validity of the proposed method, simulation and experimental results have been presented.

Perception-Based Tone Mapping Technique for Rendering HDR Image Using Histogram Modification (히스토그램 변형을 이용한 HDR 영상 렌더링을 위한 인지기반 톤 맵핑 기법)

  • Kim, Wonkyun;Ha, Changwoo;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.919-927
    • /
    • 2013
  • In this paper, we present a perception-based tone mapping technique using histogram modification for displaying high dynamic range image. HDR (high dynamic range) tone mapping algorithms are used to display HDR image on LDR (low dynamic rnage) devices. Although perception-based tone mapping methods provides better performance, it dose not always produce good results for a wide variety of images. The proposed method reduces dynamic range by using the perception-based tone mapping function and histogram modification. A derivative of perception-based tone mapping function is used as constraint function of histogram and additional compensation process is performed. This method not only improves contrast by adopting different constraints on each pixel value, but also preserves more visual details. In order to prevent over enhancement, histogram modification technique is applied. Furthermore, it can control the rate of image contrast using control parameters. Subjective and objective evaluations show that proposed algorithm is better than existing algorithms.

Experimental Assessment on Accuracy of Kinematic Coordinate Estimation for CORS by GPS Medium-range Baseline Processing Technique (GPS 상시관측소 동적 좌표추정을 위한 중기선해석 정확도의 실험적 분석)

  • Cho, Insoo;Lee, Hungkyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.79-90
    • /
    • 2016
  • The study has purposed in evaluating experiences for achievable accuracy and precision of time series at 3-D coordinates. It has been estimated from the kinematic medium-range baseline processing of Continuously Operating Reference Stations (CORS) for the potential application of crustal displacement analysis during an earthquake event. To derive the absolute coordinates of local CORS, it is highly recommended to include some of oversea country references, since it should be compromised of an observation network of the medium-range baselines within the length range from tens of kilometers to about 1,000 kilometers. A data processing procedure has reflected the dynamics of target stations as the parameter estimation stages, which have been applied to a series of experimental analysis in this research at the end. From the analysis of results, we could be concluded in that the subcentimeters-level of positioning accuracy and precision can be achievable. Furthermore, the paper summarizes impacts of satellite ephemeris, data lengths and levels of initial coordinate constraint into the positioning performance.

Body Segment Length and Joint Motion Range Restriction for Joint Errors Correction in FBX Type Motion Capture Animation based on Kinect Camera (키넥트 카메라 기반 FBX 형식 모션 캡쳐 애니메이션에서의 관절 오류 보정을 위한 인체 부위 길이와 관절 가동 범위 제한)

  • Jeong, Ju-heon;Kim, Sang-Joon;Yoon, Myeong-suk;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.405-417
    • /
    • 2020
  • Due to the popularization of the Extended Reality, research is actively underway to implement human motion in real-time 3D animation. In particular, Microsoft developed Kinect cameras for 3D motion information can be obtained without the burden of facilities and with simple operation, real-time animation can be generated by combining with 3D formats such as FBX. Compared to the marker-based motion capture system, however, Kinect has low accuracy due to its lack of estimated performance of joint information. In this paper, two algorithms are proposed to correct joint estimation errors in order to realize natural human motion in motion capture animation system in Kinect camera-based FBX format. First, obtain the position information of a person with a Kinect and create a depth map to correct the wrong joint position value using the human body segment length constraint information, and estimate the new rotation value. Second, the pre-set joint motion range constraint is applied to the existing and estimated rotation value and implemented in FBX to eliminate abnormal behavior. From the experiment, we found improvements in human behavior and compared errors between algorithms to demonstrate the superiority of the system.

Wafer-Level Packaged MEMS Resonators with a Highly Vacuum-Sensitive Quality Factor

  • Kang, Seok Jin;Moon, Young Soon;Son, Won Ho;Choi, Sie Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.632-639
    • /
    • 2014
  • Mechanical stress and the vacuum level are the two main factors dominating the quality factor of a resonator operated in the vacuum range 1 mTorr to 10 Torr. This means that if the quality factor of a resonator is very insensitive to the mechanical stress in the vacuum range, it is sensitive to mainly the ambient vacuum level. In this paper, a wafer-level packaged MEMS resonator with a highly vacuum-sensitive quality factor is presented. The proposed device is characterized by a package with out-of-plane symmetry and a suspending structure with only a single anchor. Out-of-plane symmetry helps prevent deformation of the packaged device due to thermal mismatch, and a single-clamped structure facilitates constraint-free displacement. As a result, the proposed device is very insensitive to mechanical stress and is sensitive to mainly the ambient vacuum level. The average quality factors of the devices packaged under pressures of 50, 100, and 200 mTorr were 4987, 3415, and 2127, respectively. The results demonstrated the high controllability of the quality factor by vacuum adjustment. The mechanical robustness of the quality factor was confirmed by comparing the quality factors before and after high-temperature storage. Furthermore, through more than 50 days of monitoring, the stability of the quality factor was also certified.

Shape Optimization of the H-shape Spacer Grid Spring Structure

  • Yoon, Kyung-Ho;Kim, Hyung-Kyu;Kang, Heung-Seok;Song, Kee-Nam;Park, Ki-Jong
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.547-555
    • /
    • 2001
  • In pressurized light water reactor fuel assembly, spacer grids support nuclear fuel rods both laterally and vertically. The fuel rods are supported by spacer grid springs and grid dimples that are located in the grid cell. The support system allows for some thermal expansion and imbalance of the fuel rods. The imbalance is absorbed by elastic energy to prevent coolant flow- induced vibration damage. Design requirements are defined and a design process is established. The design process includes mathematical optimization as well as practical design method. The shape of the grid spring is designed to maintain its function during the lifetime of the fuel assembly. A structural optimization method is employed for the shape design. Since the optimization is carried out in the linear range of finite element analysis, the optimum solution is verified by nonlinear analysis. A good design is found and the final design is compared with the initial conceptual design. Commercial codes are utilized for structural analysis and optimization.

  • PDF

Side Scan Sonar based Pose-graph SLAM (사이드 스캔 소나 기반 Pose-graph SLAM)

  • Gwon, Dae-Hyeon;Kim, Joowan;Kim, Moon Hwan;Park, Ho Gyu;Kim, Tae Yeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.385-394
    • /
    • 2017
  • Side scanning sonar (SSS) provides valuable information for robot navigation. However using the side scanning sonar images in the navigation was not fully studied. In this paper, we use range data, and side scanning sonar images from UnderWater Simulator (UWSim) and propose measurement models in a feature based simultaneous localization and mapping (SLAM) framework. The range data is obtained by echosounder and sidescanning sonar images from side scan sonar module for UWSim. For the feature, we used the A-KAZE feature for the SSS image matching and adjusting the relative robot pose by SSS bundle adjustment (BA) with Ceres solver. We use BA for the loop closure constraint of pose-graph SLAM. We used the Incremental Smoothing and Mapping (iSAM) to optimize the graph. The optimized trajectory was compared against the dead reckoning (DR).