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ABSTRACT:  As urbanization is progressed, the network for distributing water in a basin become 

complex due to the spatial expansion and parameter uncertainties of water supply systems. When a 

long range water supply plan is determined, the total construction and operation cost has to be 

evaluated with the system components and parameter uncertainties as many as possible. In this 

paper, the robust optimization approach of Bertsimas and Sim is applied in a hypothetical system 

to find a solution which remains feasible under the possible parameter uncertainties having the 

correlation effect between the uncertain coefficients. The system components to supply, treatment, 

and transport water are included in the developed water supply system and construction and 

expansion of the system is allowed for a long-range period. In this approach, the tradeoff between 

system robustness and total cost of the system is evaluated in terms of the degree of conservatism 

which can be converted to the probability of constraint violation. As a result, the degree of 

conservatism increases, the total cost is increased due to the installation of large capacity of 

treatment and transportation systems. The applied robust optimization technique can be used to 

determine a long-range water supply plan with the consideration of system failure. 

 

 

1 INTRODUCTION 

 

A water supply system is a basic infrastructure in civilized world. In a basin, available water 

sources such as surface, subsurface, and reclaimed water have to distribute to various users 

sufficiently over the year. Available water sources are often out of balance between basins. To 

offset the imbalance and supplement the water shortage from out of the basin, the transportation 

system inter basins has been constructed. Therefore, water supply system typically includes 

multiple sources inside and outside of the basin, water users for various purposes such as 

agricultural, domestic, industrial and commercial, treatment facilities of fresh water and 

wastewater, and reuse system. The main objective to simulate and optimize the water supply 

system is to evaluate construction and/or operation cost while meeting water demand of all users.  

Future population and climate condition are used to predict water demand and inflow to the 

basin. Therefore, uncertainty from the prediction has to be implemented when developing a water 

supply system to prevent system failure and estimate proper net benefit. The complexity of a water 

supply system and the correlated uncertainties, however, make incorporating uncertainty a 

challenging exercise. A number of stochastic optimization approaches have been applied to water 

supply system design and operation. Most works have adopted two-stage, multi-stage linear or 
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nonlinear stochastic programming with recourse or scenario analysis approach (Lund and Israel 

1995, Wilchfort and Lund 1997, Jenkins and Lund 2000, Elshorbagy et al. 1997).  

System failure, however, has to be evaluated when optimizing the total system cost to 

consider the future uncertainty. Chance-constrained models limit the probability of not being able 

to meet a constraint to consider system failure. In the other way to consider the system failure, 

robust optimization is applied to cope with future uncertainty.  

In this paper, water supply system is developed to cope with future uncertainty using robust 

optimization technique proposed by Bertsimas and Sim (2004). This type of robust optimization 

was introduced by Soyster (1973) of which solution was too conservative and practically 

unrealistic. The Soyster’s model had been extended by Ben-Tal and Nemirovski (1999) and El-

Ghaoui and Lebret (1997) to consider the degree of conservatism. These extensions, however, 

introduced a higher degree of non-linearity which was not included in the original formulation. 

This nonlinearity causes the difficulties to solve the real world application which is likely 

nonlinear. Therefore, Bertsimas and Sim (2004) proposed a new method to control the degree of 

conservatism for the system reliability without increasing the difficulty in solving the original 

problem. The hypothetical water is developed and optimized using the robust optimization in this 

study. The tradeoff between size of system components and total cost is evaluated.  

 

2 Robust Optimization Framework 

 

Known parameters are typically applied in deterministic mathematical programming, however, 

the measurement and prediction errors are often incorporated in the system parameters. Therefore, 

robust formulation to cope with parameter uncertainties is proposed for the linear programming 

model by Soyster (1973). The robust solution obtained from the formulation remains feasible 

under all possible data uncertainties belong to a convex set: 

maximize cx  
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 denotes the jth column of the constraint matrix, and the column-wise uncertainty is 

assumed to belong to a known convex set, Kj. The solution obtained from Eq. (1) tends to sacrifice 

a significant portion of the optimality of a nominal problem to guarantee robustness. 

To control the conservatism and retain the linearity of Soyster’s model, Bertsimas and 

Sim (2004) develop a new approach as the following stochastic optimization problem: 

maximize  cx  

s.t. 
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At optimality, 
*
jj xy =  for all j.  

Uncertainty for the ith constraint, iJ  represents the set of indices that correspond to uncertain 

ija
~ which are independent, symmetric and bounded random variables having a half of internal as 

2180



ijâ . To control the degree of conservatism, Bertsimas and Sim introduce an additional parameter, 

iΓ , that can take any real value within the range of [ ]iJ,0 , in a manner that the most significant 

coefficients up to the  iΓ th order is fully allowed to vary within their uncertainty intervals and 

the (  iΓ +1)th order significant coefficient, ita  is bounded by  ( ) itii âΓ−Γ , while the remaining 

coefficients are fixed at their nominal values.  

The proposed formulation assumes that the uncertain parameters are independent. If 

coefficient ija
~ in ith constraint has correlation effects from iK number of uncertainty sources as 

kjg . The new robust formulation to consider the parameter correlation is: 

maximize  cx  
subject to 
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The level of conservatism, iΓ , is a useful tool to investigate system robustness against failure. 
If system failure can be presented as a probability, it would give better understanding of system 

safety. It is possible to relate iΓ  to a probability level and show various probability bounds of 

constraint violation. Let 
*x  be an optimal solution to Eq. (3), then the probability that the ith 

constraint is violated is bounded by: 
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3 Application 

 

The robust optimization technique by Bertsimas and Sim (2004) is applied in a hypothetical 

system for a 15-years-planning period with 2 design periods and 10 operation periods. 

Groundwater storage of the system at year 1 is lower than the defined minimum required storage, 

therefore, the aquifer storage has to be recharged in the planning period. The system consists of 

two demand centers, two treatment facilities, one surface and subsurface source, external water 

supply, and transportation systems. Decision variables are system capacities and flow allocations 
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in the operation period. The treatment facilities and transportation systems have a capacity variable 

in terms of treatment volume, pipe diameter, canal depth, and pump size. Flowrates have to be 

determined in each transportation component every operation period. Therefore, total number of 

decision variable is 176 including 20 binary variables which ensure the feasibility of constraints. 

The mixed-integer nonlinear problem was solved using the GAMS/BARON global 

optimization solver with the relative termination tolerance of 0.05 (Sahinidis and Tawarmalani, 

2005). The parameter uncertainties on future water demand, inflow to the system, and correlation 

relationship from the inflow to water demand are considered in the system. To demonstrate the 

effect of robustness on the model results, the system is optimized for violation probabilities 

ranging from 0.1 (the most conservative) to 1.0 (nominal).  

As a result, system reliability is insured by enlarging treatment and transportation components. 

By doing so, the total cost of construction is increased as the degree of conservatism is raised (Fig. 

1). There is an inflection point where the enlargement of system’s capacities is substantial. The 

amount of water purchased from outside of basin is also increased as the robustness requirement 

increases. 

 

 
Fig. 1.  Total system cost in terms of degree of conservatism of the system 
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