• Title/Summary/Keyword: Random time-delay

Search Result 153, Processing Time 0.024 seconds

Control of Visual Tracking System with a Random Time Delay (랜덤한 시간 지연 요소를 갖는 영상 추적 시스템의 제어)

  • Oh, Nam-Kyu;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.21-28
    • /
    • 2011
  • In recent years, owing to the development of the image processing technology, the research to build control system using a vision sensor is stimulated. However, a random time delay must be considered, because it works of a various time to get a result of an image processing in the system. It can be seen as an obstacle factor to a control of visual tracking in real system. In this paper, implementing two vision controllers each, first one is made up PID controller and the second one is consisted of a Smith Predictor, the possibility was shown to overcome a problem of a random time delay in a visual tracking system. A number of simulations and experiments were done to show the validity of this study.

Control of Real-Time Systems with Random Time-Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.348-353
    • /
    • 2003
  • This paper considers the optimal control problem in real-time control systems with random time-delays. It proposes an algorithm which uses the linear quadratic (LQ) control method and a dedicated technique to compensate for the time-delay effects. Since it is assumed that the time-delays are unknown but the probability distribution of the delays are known a priori, the algorithm considers the mean value of the time-delays as a nominal value for random delay compensation. An example is given to show the performance of the proposed algorithm, where an inverted pendulum system is controlled over a controller-area network (CAN). Simulation results show that the proposed algorithm provides good performance results. It is shown that our algorithm is comparable to existing algorithms in both computation cost and performance.

  • PDF

A Study on the Predictability of Random Time Delay of Telecontroller via Internet (인터넷을 통한 원격제어기의 임의 시간지연의 예측가능성에 대한 연구)

  • Shim, Hyun-Seung;Huh, Kyung-Moo;Kim, Jang-Gi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.849-858
    • /
    • 2001
  • One of the important problems which should be solved in the telecontroller control is the time delay problem. In this paper, we propose a method of solving a random time delay problem using QoS(quality of service), and we show not only how to solve an unpredictable time delay problem but also how to compute a maximum time delay that could satisfy a basic assumption of many telecontroller methods. Using our proposed method, it is find that we can offer more stable time delay in telecontroller than using TCP and UDP.

  • PDF

Processing Time and Traffic Capacity Analysis for RFID System Using LBT-Random Searching Scheme (LBT-Random Searching 방식을 채용한 RFID 시스템의 트래픽 처리 시간 및 용량 해석)

  • Hwang, In-Kwan;Lim, Yeon-Jun;Pyo, Cheol-Sig
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.822-829
    • /
    • 2005
  • In this paper, a processing time and trafnc capacity analysis algorithm for RFID system using LBT-Random Searching scheme is proposed. Service time, carrier sensing time, additional delay time required for contiguous frequency channel occupancy, and additional delay time required for the contiguous using the same frequency channel are considered and the processing delay and frequency channel capacity are analyzed for the steady state operation of the system. The simulation results showing maximum capacity of the system and explaining the accuracy of the algorithm are provided.

Compensator Design for Linear System with Random Delay (불규칙한 시간지연이 존재하는 선형시스템의 제어기 설계)

  • 김선중;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.583-589
    • /
    • 2004
  • Modem control systems often use a communication network to send measurement and control signals between nodes. Communication delays can be time varying. The length of the time delays is often hard to predict and modeled as being random. This paper proposes a combined controller used to compensate network time delay by estimating the delay with the interacting multiple model (IMM). The network delay is modeled as a Markov chain and 3 modes representing heavy, medium, and low network loads are used in the IMM. The proposed method is applied to an optimal control system with double integrators and the results are compared with the existing control methods.

Compensator Design for Linear Systems with Random Delay.

  • Kim, Sun-Jung;Song, Teak-Lyul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.915-920
    • /
    • 2003
  • Modern control systems often use a communication network to send measurement and control signals between nodes. Communication delays can be time varying. The length of the time delays is often hard to predict and are modeled as being random. This paper proposes a combined controller used to compensate network time delay by estimating the delay with the interacting multiple model (IMM). The network delay is modeled as a Markov chain and 3 modes representing heavy, medium, and low network loads are used in the IMM. The proposed method is applied to an optimal control system with double integrators and the results are compared with the existing control methods.

  • PDF

A Simulation Study on Queueing Delay Performance of Slotted ALOHA under Time-Correlated Channels

  • Yoora Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.43-51
    • /
    • 2023
  • Slotted ALOHA (S-ALOHA) is a classical medium access control protocol widely used in multiple access communication networks, supporting distributed random access without the need for a central controller. Although stability and delay have been extensively studied in existing works, most of these studies have assumed ideal channel conditions or independent fading, and the impact of time-correlated wireless channels has been less addressed. In this paper, we investigate the queueing delay performance in S-ALOHA networks under time-correlated channel conditions by utilizing a Gilbert-Elliott model. Through simulation studies, we demonstrate how temporal correlation in the wireless channel affects the queueing delay performance. We find that stronger temporal correlation leads to increased variability in queue length, a larger probability of having queue overflows, and higher congestion levels in the S-ALOHA network. Consequently, there is an increase in the average queueing delay, even under a light traffic load. With these findings, we provide valuable insights into the queueing delay performance of S-ALOHA networks, supplementing the existing understanding of delay in S-ALOHA networks.

A Solution for Random Time-dely in Teleoperation via Internet using QoS (QoS를 이용한 인터넷 원격제어의 임의 시간지연 해결 방법)

  • Huh, Kyung-Moo;Shim, Hyun-Seung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.4
    • /
    • pp.38-49
    • /
    • 2002
  • In this paper, we propose a solution for random time-delay in teleoperation via internet using QoS, and show the experimental results of our proposed method. By ensuring a constant bandwidth required for the specific telecontrolled system, we change irregular random time-delay to a predictable time-delay, and so we can control the system with the time-delay shorter than the specified time-delay. Through the experimental results, we show the effectiveness of our proposed method.

Chaos Based Random Number Generation In Tiny MCU (소형마이콤에서의 카오스난수 발생 함수구현)

  • Hyun, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.1-4
    • /
    • 2010
  • RS-485, communication bases from small network system must prepare in collision. The collision is that mean the data transfer breaks. For a stabilized communication chooses 1:N polling methods. But polling is low speed in addition to maybe overload Master device. So, usual N:N Prefers a communication. In this case, must be preparing to avoid collision or some solutions. Generally, to after collision retransmits after short time. It's called delay time for short time. When making a delay time, uses address of each systems. (Address of each node) If the many nodes collided, the each node has different delay time. When making a delay time, uses a usual random number. Making a random number is hard job. So uses a usual pseudorandom number. It is more difficult from small size MCU. The Chaos random number provides stabled value. Finally, when uses the Chaos random number, the stability and reliability of system get better.

Nonlinear Networked Control Systems with Random Nature using Neural Approach and Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.444-452
    • /
    • 2008
  • We propose an intelligent predictive control approach for a nonlinear networked control system (NCS) with time-varying delay and random observation. The control is given by the sum of a nominal control and a corrective control. The nominal control is determined analytically using a linearized system model with fixed time delay. The corrective control is generated online by a neural network optimizer. A Markov chain (MC) dynamic Bayesian network (DBN) predicts the dynamics of the stochastic system online to allow predictive control design. We apply our proposed method to a satellite attitude control system and evaluate its control performance through computer simulation.