
 
1. INTRODUCTION 

 
Modern control systems often use a communication 

network to send measurement and control signal between 
nodes. A common communication network reduces the cost of 
cabling, and offers modularity and flexibility in systems 
design. Communication delays in such network can vary in a 
random fashion. The reason for this can be e. g. interrupt 
driven events, data dependent computation times, use of 
dynamic schedules, collision or varying network load. 
Random varying distributed delays, induced by a computer 
communication network, may degrade stability and 
performance of systems because timely transfer of sensor and 
control signal from one device to another is not guaranteed. 
Then length of the time delays are hard to predict.  

This paper proposes a combined controller used to 
compensate network time delay by estimating the delay with 
the interacting multiple model (IMM). The network delay is 
modeled as a Markov chain and 3 modes representing high, 
medium, and low network loads are used in the IMM. IMM 
approach consists of filters corresponding to the modes, a 
mode probability evaluator, and a combined controller 
utilizing the estimates of the filters. With the assumption that 
the mode switching is governed by an underlying Markov 
chain, the mixer uses the mode probabilities and the mode 
switching probabilities to compute a combined estimate and 
combined control input. The proposed method is applied to an 
optimal control system with double integrators and the results 
are compared with the existing control methods. 

 
 

2. MODELING OF SYSTEM DELAY 
 

In a real communication system the transfer time will 
usually be correlated with the last transfer delay. For example, 
the network load is one of the factors affecting the delay. The 
network load is typically varying at a slower than the sampling 
period in a control system. Time varying network load can be 
modeled as a Markov chain, in which transition between the 
states is governed by transition probabilities. In this paper, to 
get a simple network model it is assumed that  the network 
has three states, one for low network load, one for medium 
network load, and one for high network load. In Fig. 1 the 
transition between different states in the communication 
network is modeled as a Markov chain. Besides every state in 

the Markov chain we have a corresponding delay distribution 
modeling for the network state. The model could typically 
look like the probability distribution in Fig. 2. 
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Fig. 1 Markov chain modeling of the state in a 

communication network. 
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Fig. 2 The delay distribution corresponding to the state of 

the Markov chain in Fig. 1. 

 
 

3. PROBLEM FORMULATION  
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Fig. 3 Distributed digital control system with induced 

delays, scτ , cτ and caτ . 

In Fig. 3 the control system is illustrated in a block diagram. 
It is assumed that the sensor node is sampled regularly at a 
constant sampling period . The communication delays T scτ  

and caτ  are randomly varying. All time delays are 
independent over the full horizon and their probability 
distributions are known a priori. The controller node is 
assumed to be event driven, i.e. upon arrival to the controller 
node the control signal is calculated and sent via the network 
to the actuator node. The total time delay is always less than 
one sampling period( ). The computation time, sc ca T<τ τ+

cτ , is included in caτ . The actuator node is assumed to be 
event driven, i.e. the control signal will be used as soon as the 
actuator arrives. 
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Fig. 4 Timing of signals in the control system with time 

delays. 

 
Fig. 4 describes the effect of delay in the control system. 
 
3.1 The Markov communication network 

In order to analyze the influence of the delay on the system, 
a random variable denoted as kτ is introduced. kτ  is a 
random variable with probability distribution given by the 
state of a Markov chain. For instance kτ  can be a vector 

with the delays in the loop, i.e. [ , ]sc ca T
k k kτ τ τ= . The Markov 

chain has the state {1, , }k sγ ∈ ⋅ ⋅ ⋅  when kτ  is generated. The 
Markov chain then makes a transition between  and k 1k + . 
The transition matrix for the Markov chain is { }ijqQ = , 

, {1, ,i j s}∈ ⋅⋅ ⋅

1Pr(ij kq
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)kj iγ γ+= =

i( ) Pr(i kπ γ=

( ) ( )k kπ π ( ) skπ ( )kπ⋅ ⋅ ⋅  

kγ

( 1)k k Qπ π+ = 0(0)π π=

0π 0γ

( ) ( ) ( ) ( )x t Ax t t v t= +

( )x t

k k

( )u t

1( , )sc ca
k k k( , )sc ca

k k k kx x uτ τ u vτ τ+ −= Φ + + Γ +

ATeΦ =

0( , )sc ca
k kτ τΓ =

1( , )sc ca
k kτ τΓ =

k ky Cx

sc ca
k k Ase ds
τ τ− −

sc ca
k k

Ase ds
τ τ− −

B

B

= +

k kw

1R 2R

1

0

TN
k

k

E
−

=

k

k k

x x
Q

u u
T

N N NJ x Q
     
    

     
∑

11 12

12 2
T

Q Q
Q

Q Q


= 


22

 

|= .                           (1) 
 

The Markov state probability is denoted as  
 

)k =                                  (2) 
 

then the Markov state distribution vector is expressed as 
 

1 2= .                  (3) 
 

The probability distribution for  is given by the recursion. 

 

( ) , ,                       (4) 
 

where  is the probability distribution for . 
 
3.2 Discrete Time System with Delay 

The controlled process is assumed to be of the form 
 

Bu+                           (5) 
 

where  is the state vector,  is the input. 
Discretizing Eq. (5) at the sampling instance results in [4] 
 

1 0 1Γ       (6) 
 

where 
 

,  

0

T

∫ ,  

T

T∫ . 

The output equation is 
 

kw .                                   (7) 
 

The random noise sequences v  and  are uncorrelated 
white noises with zero mean and covariance  and  
respectively. 
 
  

4. OPTIMAL CONTROLLER 
 

In this section we solve the optimal control problem to 
minimize the cost function 
 

Nx= + ,              (8) 

 

where  

2





 

 

is symmetric, positive semi-definite, and of which Q is 
positive definite. Given the plant Eq. (6), with noise free 
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measurement of the state vector kx , and knowledge of the 
Markov state kγ . The control law that minimizes the cost 
function Eq. (8) is given by 
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where, for kγ , , we have  1,2, ,i = ⋅ ⋅ ⋅
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5. COMBINED CONTROLLER 
 
The Interacting Multiple Model(IMM)[5] is known for its 

cost-effectiveness regarding computation complexity and 
performance. The IMM consists of 4 steps ; interaction, 
prediction, measurement update, and combination as depicted 
in Fig. 5. In this section we propose a combined controller.  
The three modes representing low, medium, and high network 
loads as depicted in Fig. 2 are employed as the states of the 
Markov chain, and the IMM utilizes them as the hypotheses 
upon which Kalman filters are based as shown in Fig. 5. The 
three hypothesis, ,  and , corresponding to 

the delay are used in this study. For example, 

1
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represents the low network load case, , the medium 

network load case and , the  high network load case. 
At the sampling time , interacting states and covariance are 
represented as follows 
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<interacting step> 
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where 1Pr( | )ij k kq j iγ γ+= = = . 

After 1
i
kx + and 1

i
kP + obtained by interacting, 1

i
kx + and 1

i
kP +  

can be obtained from the prediction step of filter.  
<prediction step> 
 

* *
1 1 0 1{ ( )} { ( )}i i i i

k k k k k kx x E u E uτ τ 1+ + −= Φ + Γ + Γ         (12) 
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i i
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where ( )i
kE τ is the mean value of the th delay mode, 

and 

i
*

ku *
1ku − are optimal control inputs at sampling period 

and k 1k − . After the prediction step, each filter receives 
measurement 1kz +  and each filter expressed in Eq. (7) 
calculates the mode probability by using the residual of each 
filter. 
<mode probability calculation> 
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Updated states, updated covariance and control input are 
calculate in the update step based on each hypothesis.  
<update step> 
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where ( )iL τ is optimal control gain for the hypothesis 1
i
kH + . 

Finally, one can obtain the combined state estimate and the 
combined covariance as follows 
<combination step> 
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In this paper, we propose a combined controller to control the 
system with random delay. The proposed controller is obtained 
as follows. 
<combined control> 
 

3
*

1 1
1

Pr( | )i
k k k

i

u H Z+ + +
=

=∑                      (21) 

 

Note that is the combined control input composed 

of control inputs derived based on each hypothesis and 
mode probabilities. 

*
1ku +

 
 

6. SIMULATION RESULT 
 

In this section, the performance of combined control 
method is compared with the exiting control methods such as 
the uncompensated controller that assumes 0kτ = and the 
controller of [2] that uses the mean value of τ to calculate the 
controller gain of [2]. Then the system model with double 
integrators is employed and the total time delay τ  is between 

 and sampling period .  0 T
System equations are written as follows. 
 

0 1 0
0 0 1

x x u
   

= +   
   

, 

 

1 0y x=    . 
 

where initial control input and state transition probability 
matrix are denoted as 
 

(0) 5u = ,  0.15T =

0.85 0.1 0.05
0.1 0.8 0.1

0.05 0.1 0.85
Q

 
 =  
  

. 

 

The control effort is shown in Fig. 6 where ( )NJ t  is the 
overall control effort. In the figure, the double dashed line 
represents the uncompensated controller, the dashed line 
represent the controller of [2], and the solid line represents the 
combined controller. In Fig. 6, cost of each controller is almost  
same for small delay cases. The cost of the uncompensated 
controller is increased for medium delay and the combined 
controller is be shown to have the smallest cost for large delay. 

 
Fig. 6 Cost functions of the three controllers 

Figs. 8~13 illustrate the plant output and the control input of 
all the three controllers for the random delay history shown in 
Fig. 7. In Figs. 8~9, plant output and control input of the 
uncompensated controller are shown to be slow and 
fluctuating to reach the steady state, while Figs. 10~11 show 
the performance of the controller of [2] while Figs. 12~13 
show the performance of the combined controller. In the 
figures, it is obvious that the combined controller has superior 
performance over the controller of [2] in both transient 
response and stability. 

 
Fig. 7 Random delay history 
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Fig. 8 Plant output using the uncompensated   

controller. 

 
Fig. 9 Control input using the uncompensated 

controller 

 
Fig. 10 Plant output using the controller of [2]  

 
Fig. 11 Control input using the controller of [2] 

 
Fig. 12 Plant output using the combined controller. 

 
Fig. 13 Control input using the combined controller. 

 
 

7. CONCLUSION 
 

In this paper we propose a combined control scheme based 
on the IMM structure to compensate the random delay induced 
in a network system. The combined controller is shown to 
have superior performance over the existing controllers. 
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