• Title/Summary/Keyword: Random regression model

Search Result 504, Processing Time 0.024 seconds

A Study on the Socio-economic Characteristics of the Angler Population and the Estimation of A Fishing Frequency Function (유어낚시인구의 사회경제학적 특성과 출조빈도함수의 추정에 관한 연구)

  • Park Cheol-Hyung
    • The Journal of Fisheries Business Administration
    • /
    • v.36 no.1 s.67
    • /
    • pp.81-101
    • /
    • 2005
  • This article is to estimate the fishing frequency function in Korean recreational fishery with respect to socio-economic characteristics of anglers. First, the study described the characteristics of the entire angler population on the view points of 9 socio-economic variables. And then, the study divided the total angler population into three groups of in-land, sea, and mixed angler populations in order to investigate the differences in their characteristics. The study could confirm the existence of differences in regions, size of regions, and educational levels between the in - land and the sea angler populations by testing heterogeneity in the frequency table. The fishing frequency function is estimated using Poisson regression model in order to accomodate the count data(non-negative discrete random variable) aspects of the fishing frequency. However, the model specification error is found due to overdispersion of data. The model exhibits the lack of goodness of fit. The negative binomial regression model is adopted to cure the overdispersion of the data as an alternative estimation methodology. Finally, the study can confirm overdispersion does not exist in the model any more and the goodness of fit improved significantly to the reasonable level. The results of estimation of fishing frequency population modeled by the negative binomial regression models are following. The three variables of region, sex, and education have effects on the decision making process of fishing frequency in the case of in-land recreation fishery. On the other hand, the three variables of sex, age, and marriage status do the same job in the case of sea angler population. Among the left-over variables, both income and use of Internet variables now affect on the process in mixed angler population. Finally, the results of whole angler population show that all of the previous variables are proven to be statistically significant due to the summation of data with all three sub-groups of angler population.

  • PDF

Convergence study to detect metabolic syndrome risk factors by gender difference (성별에 따른 대사증후군의 위험요인 탐색을 위한 융복합 연구)

  • Lee, So-Eun;Rhee, Hyun-Sill
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.477-486
    • /
    • 2021
  • This study was conducted to detect metabolic syndrome risk factors and gender difference in adults. 18,616 cases of adults are collected by Korea Health and Nutrition Examination Study from 2016 to 2019. Using 4 types of machine Learning(Logistic Regression, Decision Tree, Naïve Bayes, Random Forest) to predict Metabolic Syndrome. The results showed that the Random Forest was superior to other methods in men and women. In both of participants, BMI, diet(fat, vitamin C, vitamin A, protein, energy intake), number of underlying chronic disease and age were the upper importance. In women, education level, menarche age, menopause was additional upper importance and age, number of underlying chronic disease were more powerful importance than men. Future study have to verify various strategy to prevent metabolic syndrome.

An assessment of machine learning models for slump flow and examining redundant features

  • Unlu, Ramazan
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.565-574
    • /
    • 2020
  • Over the years, several machine learning approaches have been proposed and utilized to create a prediction model for the high-performance concrete (HPC) slump flow. Despite HPC is a highly complex material, predicting its pattern is a rather ambitious process. Hence, choosing and applying the correct method remain a crucial task. Like some other problems, prediction of HPC slump flow suffers from abnormal attributes which might both have an influence on prediction accuracy and increases variance. In recent years, different studies are proposed to optimize the prediction accuracy for HPC slump flow. However, more state-of-the-art regression algorithms can be implemented to create a better model. This study focuses on several methods with different mathematical backgrounds to get the best possible results. Four well-known algorithms Support Vector Regression, M5P Trees, Random Forest, and MLPReg are implemented with optimum parameters as base learners. Also, redundant features are examined to better understand both how ingredients influence on prediction models and whether possible to achieve acceptable results with a few components. Based on the findings, the MLPReg algorithm with optimum parameters gives better results than others in terms of commonly used statistical error evaluation metrics. Besides, chosen algorithms can give rather accurate results using just a few attributes of a slump flow dataset.

Convergence study to predict length of stay in premature infants using machine learning (머신러닝을 이용한 미숙아의 재원일수 예측 융복합 연구)

  • Kim, Cheok-Hwan;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.271-282
    • /
    • 2021
  • This study was conducted to develop a model for predicting the length of stay for premature infants through machine learning. For the development of this model, 6,149 cases of premature infants discharged from the hospital from 2011 to 2016 of the discharge injury in-depth survey data collected by the Korea Centers for Disease Control and Prevention were used. The neural network model of the initial hospitalization was superior to other models with an explanatory power (R2) of 0.75. In the model added by converting the clinical diagnosis to CCS(Clinical class ification software), the explanatory power (R2) of the cubist model was 0.81, which was superior to the random forest, gradient boost, neural network, and penalty regression models. In this study, using national data, a model for predicting the length of stay for premature infants was presented through machine learning and its applicability was confirmed. However, due to the lack of clinical information and parental information, additional research is needed to improve future performance.

Application of Random Forests to Association Studies Using Mitochondrial Single Nucleotide Polymorphisms

  • Kim, Yoon-Hee;Kim, Ho
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.168-173
    • /
    • 2007
  • In previous nuclear genomic association studies, Random Forests (RF), one of several up-to-date machine learning methods, has been used successfully to generate evidence of association of genetic polymorphisms with diseases or other phenotypes. Compared with traditional statistical analytic methods, such as chi-square tests or logistic regression models, the RF method has advantages in handling large numbers of predictor variables and examining gene-gene interactions without a specific model. Here, we applied the RF method to find the association between mitochondrial single nucleotide polymorphisms (mtSNPs) and diabetes risk. The results from a chi-square test validated the usage of RF for association studies using mtDNA. Indexes of important variables such as the Gini index and mean decrease in accuracy index performed well compared with chi-square tests in favor of finding mtSNPs associated with a real disease example, type 2 diabetes.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

Local Asymptotic Normality for Independent Not Identically Distributed Observations in Semiparametric Models

  • Park, Byeong U.;Jeon, Jong W.;Song, Moon S.;Kim, Woo C.
    • Journal of the Korean Statistical Society
    • /
    • v.20 no.1
    • /
    • pp.85-92
    • /
    • 1991
  • A set of conditions ensuring local asymptotic normality for independent but not necessarily identically distributed observations in semiparametric models is presented here. The conditions are turned out to be more direct and easier to verify than those of Oosterhoff and van Zwet(1979) in semiparametric models. Examples considered include the simple linear regression model and Cox's proportional hazards model without censoring where the covariates are not random.

  • PDF

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Estimation of Duck House Litter Evaporation Rate Using Machine Learning (기계학습을 활용한 오리사 바닥재 수분 발생량 분석)

  • Kim, Dain;Lee, In-bok;Yeo, Uk-hyeon;Lee, Sang-yeon;Park, Sejun;Decano, Cristina;Kim, Jun-gyu;Choi, Young-bae;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Solmoe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Duck industry had a rapid growth in recent years. Nevertheless, researches to improve duck house environment are still not sufficient enough. Moisture generation of duck house litter is an important factor because it may cause severe illness and low productivity. However, the measuring process is difficult because it could be disturbed with animal excrements and other factors. Therefore, it has to be calculated according to the environmental data around the duck house litter. To cut through all these procedures, we built several machine learning regression model forecasting moisture generation of litter by measured environment data (air temperature, relative humidity, wind velocity and water contents). 5 models (Multi Linear Regression, k-Nearest Neighbors, Support Vector Regression, Random Forest and Deep Neural Network). have been selected for regression. By using R-Square, RMSE and MAE as evaluation metrics, the best accurate model was estimated according to the variables for each machine learning model. In addition, to address the small amount of data acquired through lab experiments, bootstrapping method, a technique utilized in statistics, was used. As a result, the most accurate model selected was Random Forest, with parameters of n-estimator 200 by bootstrapping the original data nine times.

Reliability Analysis of Hybrid Rocket using Monte-Carlo Simulation (몬테 카를로 시뮬레이션을 이용한 하이브리드 로켓의 신뢰성 분석)

  • Moon, Keunhwan;Kim, Wanbeom;Lee, Jungpyo;Choi, Jooho;Kim, Jinkon
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, probabilistic reliability analysis was conducted for hybrid rocket performance using Monte-Carlo Simulation. For the accuracy, reliability analysis was performed with experimental data. To simplify the analysis process, the oxidizer was supplied with constant pressure, so that pressure variation with time can be eliminated. And time-space averaged regression rate model was used. The regression rate is obtained with a series of experiments. For reliability analysis of thrust, constant exponent of regression rate is assumed that has probabilistic character. So, the efficiency of characteristic velocity has also probabilistic values. As a results, probability distribution of the thrust is obtained by Monte-Carlo simulation using random samples of the input parameter and validated under the 95% confidence level.